ArM Research

The Semantics of Transactions
and Weak Memory

in x86, Power, ARM, and C++

Nathan Chong, Tyler Sorensen, John Wickerson
June 2018

Tyler Sorensen John Wickerson

2 © 2017 Arm Limited a r m Resea rCh

Transactions Weak Memory

22222222 imited q rm Resea rCh

Transactions Weak Memory

ne promise of scalable
nerformance without
programmer pain

Ar'M Research

Transactions Weak Memory

ne promise of scalable Making sense of micro-
nerformance without architecture that breaks
programmer pain programmer intuition

Ar'MResearch

Contributions

Clarify interplay between transactions and weak memory

for x86, Power, Armv8, and C++
using axiomatic semantics and automated tool support

Resulting in the discovery of

Unsoundness of lock elision wrt an Armv8 spinlock impl. (this talk)
Ambiguity in Power TM specification

Proposed simplification to C++ TM specification

... (more in paper)

6 © 2017 Arm Limited q rm RGSGCI I'Ch

TM-aware Memalloy
[Wickerson et al.,
POPL 2017]

7 © 2017 Arm Limited a r m Re Sea rCh

Axiomatic Armv8
model with TM

+

Lock elision
+

Armv8 spinlock impl.

TM-aware Memalloy
[Wickerson et al.,
POPL 2017]

8 © 2017 Arm Limited q r m Resea rCh

Axiomatic Armv8&

model with TM e e
N : Y B
Lock elision L N
+ h _
Armv8 spinlock impl. L
}
TM-aware Memalloy _~ e e
[Wickerson et al.,
POPL 2017] Counterexample

9 © 2017 Arm Limited a r m Resea rCh

// Initially, v ==

PO P
lock() lock()

V :=V + 2 v = 1
unlock() unlock()

// Can v == 27
// A violation of mutual exclusion

11111111111 ArM Research

// Initially, v == Serialise:

// v ==
PO P1 vV 1=V + 2
lock() lock() Vv = 1
V :=V + 2 v =1 /] v ==
unlock() unlock()

// Can v == 27
// A violation of mutual exclusion

11111111111 ArM Research

// Initially, v == Serialise:

// v ==
PO P v =1
lock() lock() V := Vv + 2
V :=V + 2 v =1 /] v ==
unlock() unlock()

// Can v == 27
// A violation of mutual exclusion

11111111111 ArM Research

lock() lock()

unlock() | unlock()
Arm Research

Addrofy

14 © 2017 Arm Limited

lock()

R W5, [X0]

LD

ADD W5,W5,#2
STR W5,[X0]
unlock()

lock()

MOV W7, #1
STR W7,[X0]

unlock()
Ar'M Research

Lock elision [Rajwar and Goodman, MICRO 2001]

tx {
lock() if (lock taken) txabort()
<crit> > <crit> \
unlOCk()) Add lock \;ariable to read-set

Ar'm Research

Addr of v

16 © 2017 Arm Limited

lock()

LDR W5, [X0]
ADD W5,W5,#2
STR W5,[X0]
unlock()

lock()

MOV W7, #1
STR W7, [X0]

unlock()
Ar'M Research

Addr of v

17 © 2017 Arm Limited

lock()

LDR W5, [X0]
ADD W5,W5,#2
STR W5,[X0]
unlock()

tx {
1f (lock taken)
txabort()

MOV W7, #1
STR W7, [X0]

Ar'M Research

lock () TXBEGIN

Addr of v _LQSMWQLLXT]
_______________________________ CBZ W6,Crit
Lock addr """ TYABORT
Crit:

LDR W5,[X0] MOV W7 ,#1

ADD W5,W5,#2 STR W7, [X0]

STR W5,[X0]

unlock() TXEND

11111111111 imited q rm ReseGrCh

Addr of v
Lock addr

19 © 2017 Arm Limited

Hypothetical, but
representative TM
instructions

________________ TXBEGIN
T LDR W6, [X1]
L .. ~CBZ We,Crit

" TXABORT

Compare-Branch—on-Z\é\ro'

Jump to Critif lock is .

free; otherwise abort to ', = CF1t:
fail-handler (omitted) % MOV W7, #1

STR W7,[X0]

. TXEND
ArM Research

Addr of v
Lock addr

20 © 2017 Arm Limited

lock()

LDR W5, [X0]
ADD W5,W5,#2
STR W5,[X0]
unlock()

TXBEGIN
LDR W6, [X1]
CBZ W6,Cri1it
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
ArM Research

Arm spinlock [Arm arch. reference manual, K9.3]

o pe Ar'M Research

Arm spinlock [Arm arch. reference manual, K9.3]

—_—

Loop:
Lock addr LDAXR W2, [X1] Atomically
CBNZ W2, Loop update
— lock from
MOV W3, #1 oo
STXR W4,W3,[X1]| taken
lock() CBNZ W4 ,Loop
<crit> = <crit> -
unlock() STLR WZR,[X1] | Unlock

Ar'm Research

Arm spinlock [Arm arch. reference manual, K9.3]

Loop:
Lock addr LDAXR W2, [X1]
_CGBNZ W2,Loop
Excl load/store pair<__ Moy W3 H#

~<o
~

~
-~
-~
-~
~
-~
~
-
~
-~

<crit> W4 ==
STLR WZR,[X1] (success)

Ar'm Research

Store-excl succeeds if it is the
immediate coherence successor of
the write read-from by the load-
excl [Sarkar et al., PLDI 2012]

24 © 2017 Arm Limited

WZR, [X11]

(success)

Ar'm Research

Store-excl succeeds if it is the

] : read-excl
immediate coherence successor of

the write read-from by the load- ;sjf;y_
excl [Sarkar et al., PLDI 2012] write

\4
write-excl

WZR, [X11] (success)

25 © 2017 Arm Limited a r m Resed I'Ch

Store-excl succeeds if it is the
immediate coherence successor of
the write read-from by the load-
excl [Sarkar et al., PLDI 2012]

26 © 2017 Arm Limited

reads-from

write » read-excl
read-

coherence modify-
write

v

write-excl

STLR WZR, [X1]

(success)

Ar'm Research

Store-excl succeeds if it is the
immediate coherence successor of
the write read-from by the load-
excl [Sarkar et al., PLDI 2012]

. reads—-from
write » read-excl
read-
coherence modify-
write

coherence v

write-excl

v /
coherence

A intervening-write

27 © 2017 Arm Limited

STLR WZR,[Xx1] (success)

Ar'm Research

Arm spinlock [Arm arch. reference manual, K9.3]

Loop:
Lock addr LDAXR W2 , [X1 :l
/,CBNZ W2,Loop - Spin if lock
Compare .~ MOV W3 1 taken

and Branch ™.
on Non-Zero

. STXR W4,W3,[X1]
“CBNZ W4 Loop - Spin if excl
cerit> update

STLR WZR,[x17 failed

Ar'm Research

Arm spinlock [Arm arch. reference manual, K9.3]

Loop:
Lock addr LDAXR W2, [X1]
CBNZ W2, Loop
Unlock by MOV W3, #]
writing 0; ™.
WZR=zero . STXR W4, W3, [X1]
register \CB\NZ W4, Loop
<crit>

STLR “WZR, [X1]
Ar'M Research

Arm spinlock [Arm arch. reference manual, K9.3]

Loop: 5
_—CBNZ W2,Loop
Acquire/Release «{’/ MOV W3, #1
~ “half barriers” ™. STXR W4,W3, [X1]
RCsc [Gharachorloo CBNZ W4, Loop
et al, ISCA 1990] T ‘
<crit>

STLR WzR,[x11 |+ | &

Ar'm Research

Read-acquire ordered-before any

read-acq
program-order successor | o
ordered- ;
before .
- © program- . program-
Any program-order predecessor g order ¢ order
ordered-before a write-release 5 ordered-
§ before
. write-rel

[Arm arch. reference manual, B2.3]

STLR WZR,[X1] y

31 © 2017 Arm Limited a r m Resea rCh

Addr of v
Lock addr

32 © 2017 Arm Limited

lock()

LDR W5, [X0]
ADD W5,W5,#2
STR W5,[X0]
unlock()

TXBEGIN
LDR W6, [X1]
CBZ W6,Cri1it
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'M Research

Addr of v
Lock addr

33 © 2017 Arm Limited

Loop

L DAXR W2, [X1]
CBNZ
MOV
STXR
CBNZ

LD
AD
ST
ST

W2,Loop
W3, #]1

W4 W3, [X1]
W4, Loop
W5, [X0]
W5, W5, #2
W5, [X0]
WZR, [X1]

TXBEGIN
LDR W6, [X1]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'M Research

lock() lock()
V :=V + 2 v =1
unlock() unlock()

A program combining
transactions and weak memory

Can v == 2 (violate mutual exclusion)?

<
Il
S

lock = 0

Loop

LDAXR W2, [X11]
CBNZ
MOV
STXR
CBNZ

LD
AD
ST
ST

W2,Loop
W3, #1

W4 W3, [XT1]
W4, Loop
W5, [X0]
W5, W5, #2
W5, [X0]
WZR, [X11]

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'M Research

Loop

1 LDAXR W2, [X11]

_ CBNZ
MOV
STXR
CBNZ

LD
AD
ST
ST

W2,Loop
W3, #1

W4 W3, [XT1]
W4, Loop
W5, [X0]
W5, W5, #2
W5, [X0]
WZR, [X11]

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research

W5

”Loop:

1 LDAXR W2, [X1]

s CBNZ W2,Loop
MOV W3, #1
STXR W4 W3, [X1]
CBNZ W4 ,Loop

(2 LDR W5, [X0]
ADD W5, W5, #2

STR WS,EXQJ

STLR WZR, [X1]

)

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research

Lock —

Critical
Region |

38 © 2017 Arm Limited

—

PO
read-acg-excl

Spec-access

P
read-acg-excl

Spec-access

Ar'm Research

Lock —

Critical
Region |

39 © 2017 Arm Limited

—

S

g

PO
read-acg-excl

write-excl

Spec-access

P
read-acg-excl

——————— -
_________ -

write-excl

Spec-access

== 0nly one excl

cah succeed

Ar'm Research

It is “the [Arm] architecture’s
intention to allow store exclusives
to promise success/failure very
early”

Armv8 flat operational model
[Pulte et al., POPL 2018]

40 © 2017 Arm Limited

Ar'm Research

W5

”Loop:

1 LDAXR W2, [X1]

s CBNZ W2,Loop
MOV W3, #1
STXR W4 W3, [X1]
CBNZ W4 ,Loop

(2 LDR W5, [X0]
ADD W5, W5, #2

STR WS,EXQJ

STLR WZR, [X1]

)

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research

lock

W2

W5
W6

42 ©201

w

0

Loop

MOV

STXR..

CBNZ

(2 LD
AD
ST
ST

?

1 LDAXR W2, [X11]
| CBNZ

W2,Loop
W3, #1
W4, W3, [X1]

‘W4, Loop

W5, [%Q]]

)

W5, W5, #2.._

W5, [X01]
&
WZR, [X11]

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:

MOV W7, #1
STR W7, [X0]

| “TXEND

_/

Ar'm Research

‘Loop: Il TXBEGIN A
v o 1 LDAXR W2, [X1] 3 LDR W6, [X11]
5 CBNZ W2,Loop) CBZ W6,Cri1it
lock = 1. MOV W3, # 3| TXABORT
W = o 4 STXR W4, W3, [X1]
. CBNZ W4,Loop || Crit:
W3 = 1 s ~N
wa = o (2 LDR W5,[X0] MOV W7, #1
WE = o ADD W5 W5, #2 STR W7, [X0]
WE = 0 STR W5, [X0]
N7 = 1 STLR WZR, [X11] . TXEND y
@ ©2017 Am Uit Ar'M Research

lock

S = O

W2
W3
W4
W5
W6

W7

¥

-
-
-
-
-

P
Loop:

1 LDAXR W2, [X1]
s CBNZ W2,Loop

v MOV W3, #T

144 STXR W4,W3, [X1]
.1 CBNZ W4, Loop
12 LDR W5, [X0]

-ADD W5, W5, #2
5'STR W5, [X0]

_ 'STLR WZR, [X11]

\

DANEAN

" TXBEGIN A
3 LDR W6, [X11
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

L TXEND W,
Ar'm Research

This Armv8 acquire-exclusive spinlock is safe, individually

Elided locks using only transactions are safe, individually

The combination is unsound: the characteristic that makes this
spinlock safe (the lock variable must be written-to) is exactly
the feature that lock elision takes advantage of

45 © 2017 Arm Limited q r m Resea rCh

“[the] correctness [of lock elision] is
guaranteed without any dependence on
memory ordering”

[Rajwar and Goodman, MICRO 2001]

<
Il
S

lock = 0

’Loop:
1 LDAXR W2, [X1]]
s CBNZ W2,Loop
MOV W3, #1
STXR W4, W3, [X11]
CBNZ W4, Loop
(2 LDR W5, [X0]
ADD W5,W5,#2
STR W5, [X01]
STLR WZR, [X11]

) + Lock

_ Critical
Region

Vital assumption:
lock acquisition
happens-before
any access of the
critical region

Ar'M Research

A seven(teen) year-old counterexample

2001: Rajwar and Goodman introduce lock elision
2011: Acquire-release introduced to Armv8

2018: Lock elision counterexample

48 © 2017 Arm Limited q r m Reseo rCh

Replace excls ...
withv8.1 AL
(acg-rel)
atomic

nsert DMB =~
petween

ock() and
critical region

-
-
~—a
-
-

i

LDAXR W2, [X1]]

\
\
\
\
\
\
\
N
\
\
\
\
\

MOV
STXR
CBNZ

LD
AD
ST
ST

o)
D
o)

_R

W2,Loop
W3, #1

W4 W3, [X1]
W4, Loop
W5, [X0]
W5, W5, #2
W5, [X0]
WZR, [X1]

TXBEGIN
LDR W6, [X1]]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research

Key ideas and related work

Axiomatic framework and tools “Transactions in Relaxed Memory
[Alglave et al., TOPLAS 2014] Architectures”, [Dongol et al., POPL
Memalloy tool for automatically 2018]

comparing memory models https://bit.ly/2xJvbeT

[Wickerson et al., POPL 2017]

Litmus test minimality [Lustig et al.,
ASPLOS 2017]

— Automated tool support for
empirical testing and bounded
verification

50 © 2017 Arm Limited q r m Resea rCh

https://bit.ly/2xJvbcT

Our paper

TM extensions of x86, Power, Armv8, and C++ axiomatic memory models
Formal models backed by automated tooling for

Synthesis of minimal tests for empirical testing
Bounded verification of TM-related transformations and properties

Resulting in the discovery of

Unsoundness of lock elision wrt an Armv8 spinlock impl.
Ambiguity in Power TM specification

Proposed simplification to C++ TM specification

... (more in paper)

51 © 2017 Arm Limited q r m Resea rCh

References

Alglave et al., “Herding Cats: Modelling,
Simulation, Testing, and Data-mining for Weak
Memory”, TOPLAS 2014

Arm, “ARMv8 Architecture Reference Manual”

Cain et al., “Robust Architectural Support for
Transactional Memory in the Power
Architecture”, ISCA 2013

Dongol et al., “Transactions in Relaxed
Memory Architectures”, POPL 2018

Gharachorloo et al., “Memory consistency and
event ordering in scalable shared-memory
multiprocessors”, ISCA 1990

52 © 2017 Arm Limited

Lustig et al., “Automated Synthesis of
Comprehensive Memory Model Litmus Test
Suites”, ASPLOS 2017

Pulte et al., “Simplifying ARM Concurrency:
Multicopy-atomic Axiomatic and Operational
Models for ARMv8”, POPL 2018

Rajwar and Goodman, “Speculative Lock
Elision: Enabling Highly Concurrent
Multithreaded Execution”, MICRO 2001

Sarkar et al., “Synchronising C/C++ and
POWER”, PLDI 2012

Wickerson et al., “Automatically Comparing
Memory Consistency Models”, POPL 2017

Ar'm Research

Acknowledgements

We are grateful to Stephan Diestelhorst, Matt Horsnell, and Grigorios Magklis for
extensive discussions of TM in general, and how it might interact with the Armv8
architecture memory model, to Nizamudheen Ahmed and Vishwanath HV for RTL testing,
and to Peter Sewell for letting us access his Power machine.

We thank the following people for their insightful comments on various drafts of this
work: Mark Batty, Andrea Cerone, George Constantinides, Stephen Dolan, Alastair
Donaldson, Brijesh Dongol, Hugues Evrard, Shaked Flur, Graham Hazel, Radha Jagadeesan,
Jan Konczak, Dominic Mulligan, Christopher Pulte, Alastair Reid, James Riely, the
anonymous PLDI reviewers, and our shepherd, Julian Dolby.

This work was supported by an Imperial College Research Fellowship and the EPSRC
(EP/K034448/1).

53 © 2017 Arm Limited a r m Resea rCh

54 © 2017 Arm Limited a r m Resed I'Ch

