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ne promise of scalable Making sense of micro-
nerformance without architecture that breaks
programmer pain programmer intuition
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Contributions

Clarify interplay between transactions and weak memory

for x86, Power, Armv8, and C++
using axiomatic semantics and automated tool support

Resulting in the discovery of

Unsoundness of lock elision wrt an Armv8 spinlock impl. (this talk)
Ambiguity in Power TM specification

Proposed simplification to C++ TM specification

... (more in paper)
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TM-aware Memalloy
[Wickerson et al.,
POPL 2017]
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Axiomatic Armv8
model with TM

+

Lock elision
+

Armv8 spinlock impl.

TM-aware Memalloy
[Wickerson et al.,
POPL 2017]
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Axiomatic Armv8&

model with TM e e
N : Y B
Lock elision L N
+ h \_
Armv8 spinlock impl. L
}
TM-aware Memalloy _~ e e
[Wickerson et al.,
POPL 2017] Counterexample
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// Initially, v ==

PO P
lock() lock()

V :=V + 2 v = 1
unlock() unlock()

// Can v == 27
// A violation of mutual exclusion
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// Initially, v == Serialise:

// v ==
PO P1 vV 1=V + 2
lock() lock() Vv = 1
V :=V + 2 v =1 /] v ==
unlock() unlock()

// Can v == 27
// A violation of mutual exclusion
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// Initially, v == Serialise:

// v ==
PO P v =1
lock() lock() V := Vv + 2
V :=V + 2 v =1 /] v ==
unlock() unlock()

// Can v == 27
// A violation of mutual exclusion
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lock() lock()

unlock() | unlock()
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Addrofy
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lock()

R W5, [X0]

LD

ADD  W5,W5,#2
STR  W5,[X0]
unlock()

lock()

MOV W7, #1
STR W7,[X0]

unlock()
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Lock elision [Rajwar and Goodman, MICRO 2001]

tx {
lock() if (lock taken) txabort()
<crit> > <crit> \
unlOCk() ) Add lock \;ariable to read-set
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Addr of v
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lock()

LDR W5, [X0]
ADD  W5,W5,#2
STR  W5,[X0]
unlock()

lock()

MOV W7, #1
STR W7, [X0]

unlock()
Ar'M Research



Addr of v
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lock()

LDR W5, [X0]
ADD  W5,W5,#2
STR  W5,[X0]
unlock()

tx {
1f (lock taken)
txabort()

MOV W7, #1
STR W7, [X0]
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lock () TXBEGIN

Addr of v _LQSMWQLLXT]
_______________________________ CBZ W6,Crit
Lock addr """ TYABORT
Crit:

LDR  W5,[X0] MOV W7 ,#1

ADD  W5,W5,#2 STR W7, [X0]

STR  W5,[X0]

unlock() TXEND
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Addr of v
Lock addr
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Hypothetical, but
representative TM
instructions

________________ TXBEGIN
T LDR W6, [X1]
L .. ~CBZ We,Crit

" TXABORT

Compare-Branch—on-Z\é\ro'

Jump to Critif lock is .

free; otherwise abort to ', = CF1t:
fail-handler (omitted) % MOV W7, #1

STR W7,[X0]

. TXEND
ArM Research



Addr of v
Lock addr
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lock()

LDR W5, [X0]
ADD  W5,W5,#2
STR  W5,[X0]
unlock()

TXBEGIN
LDR W6, [X1]
CBZ W6,Cri1it
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
ArM Research



Arm spinlock [Arm arch. reference manual, K9.3]
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Arm spinlock [Arm arch. reference manual, K9.3]

—_—

Loop:
Lock addr LDAXR W2, [X1] Atomically
CBNZ W2, Loop update
— lock from
MOV W3, #1 oo
STXR W4,W3,[X1]| taken
lock() CBNZ W4 ,Loop
<crit> = <crit> -
unlock() STLR WZR,[X1] | Unlock

Ar'm Research



Arm spinlock [Arm arch. reference manual, K9.3]

Loop:
Lock addr LDAXR W2, [X1]
_CGBNZ W2,Loop
Excl load/store pair<__ Moy W3 H#

~<o
~

~
-~
-~
-~
~
-~
~
-
~
-~

<crit> W4 ==
STLR WZR,[X1]  (success)

Ar'm Research



Store-excl succeeds if it is the
immediate coherence successor of
the write read-from by the load-
excl [Sarkar et al., PLDI 2012]
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WZR, [X11]

(success)
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Store-excl succeeds if it is the

] : read-excl
immediate coherence successor of

the write read-from by the load- ;sjf;y_
excl [Sarkar et al., PLDI 2012] write

\4
write-excl

WZR, [X11] (success)
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Store-excl succeeds if it is the
immediate coherence successor of
the write read-from by the load-
excl [Sarkar et al., PLDI 2012]
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reads-from

write » read-excl
read-

coherence modify-
write

v

write-excl

STLR WZR, [X1 ]

(success)
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Store-excl succeeds if it is the
immediate coherence successor of
the write read-from by the load-
excl [Sarkar et al., PLDI 2012]

. reads—-from
write » read-excl
read-
coherence modify-
write

coherence v

write-excl

v /
coherence

A intervening-write
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STLR WZR,[Xx1]  (success)
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Arm spinlock [Arm arch. reference manual, K9.3]

Loop:
Lock addr LDAXR W2 , [X1 :l
/,CBNZ W2,Loop - Spin if lock
Compare .~ MOV W3 1 taken

and Branch ™.
on Non-Zero

. STXR W4,W3,[X1]
“CBNZ W4 Loop - Spin if excl
cerit> update

STLR WZR,[x17  failed
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Arm spinlock [Arm arch. reference manual, K9.3]

Loop:
Lock addr LDAXR W2, [X1]
CBNZ W2, Loop
Unlock by MOV W3, #]
writing 0; ™.
WZR=zero . STXR W4, W3, [X1]
register \CB\NZ W4, Loop
<crit>

STLR “WZR, [X1]
Ar'M Research



Arm spinlock [Arm arch. reference manual, K9.3]

Loop: 5
_—CBNZ W2,Loop
Acquire/Release «{’/ MOV W3, #1
~ “half barriers” ™. STXR  W4,W3, [X1]
RCsc [Gharachorloo CBNZ W4, Loop
et al, ISCA 1990] T ‘
<crit>

STLR WzR,[x11 |+ | &

Ar'm Research



Read-acquire ordered-before any

read-acq
program-order successor | o
ordered- ;
before .
- © program- . program-
Any program-order predecessor g order ¢ order
ordered-before a write-release 5 ordered-
§ before
. write-rel

[Arm arch. reference manual, B2.3]

STLR WZR,[X1] y
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Addr of v
Lock addr
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lock()

LDR W5, [X0]
ADD  W5,W5,#2
STR  W5,[X0]
unlock()

TXBEGIN
LDR W6, [X1]
CBZ W6,Cri1it
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'M Research



Addr of v
Lock addr
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Loop

L DAXR W2, [X1]
CBNZ
MOV
STXR
CBNZ

LD
AD
ST
ST

W2,Loop
W3, #]1

W4 W3, [X1]
W4, Loop
W5, [X0 ]
W5, W5, #2
W5, [X0 ]
WZR, [X1]

TXBEGIN
LDR W6, [X1]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'M Research



lock() lock()
V :=V + 2 v =1
unlock() unlock()

A program combining
transactions and weak memory

Can v == 2 (violate mutual exclusion)?



<
Il
S

lock = 0

Loop

LDAXR W2, [X11]
CBNZ
MOV
STXR
CBNZ

LD
AD
ST
ST

W2,Loop
W3, #1

W4 W3, [XT1]
W4, Loop
W5, [X0 ]
W5, W5, #2
W5, [X0 ]
WZR, [X11]

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'M Research



Loop

1 LDAXR W2, [X11]

_ CBNZ
MOV
STXR
CBNZ

LD
AD
ST
ST

W2,Loop
W3, #1

W4 W3, [XT1]
W4, Loop
W5, [X0 ]
W5, W5, #2
W5, [X0 ]
WZR, [X11]

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research



W5

”Loop:

1 LDAXR W2, [X1 ]

s CBNZ W2,Loop
MOV W3, #1
STXR W4 W3, [X1]
CBNZ W4 ,Loop

(2 LDR W5, [X0]
ADD W5, W5, #2

STR WS,EXQJ

STLR WZR, [X1]

)

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research



Lock —

Critical
Region |
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—

PO
read-acg-excl

Spec-access

P
read-acg-excl

Spec-access
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Lock —

Critical
Region |
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—

S

g

PO
read-acg-excl

write-excl

Spec-access

P
read-acg-excl

——————— -
_________ -

write-excl

Spec-access

== 0nly one excl

cah succeed
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It is “the [Arm] architecture’s
intention to allow store exclusives
to promise success/failure very
early”

Armv8 flat operational model
[Pulte et al., POPL 2018]
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W5

”Loop:

1 LDAXR W2, [X1 ]

s CBNZ W2,Loop
MOV W3, #1
STXR W4 W3, [X1]
CBNZ W4 ,Loop

(2 LDR W5, [X0]
ADD W5, W5, #2

STR WS,EXQJ

STLR WZR, [X1]

)

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research



lock

W2

W5
W6

42 ©201

w

0

Loop

MOV

STXR..

CBNZ

(2 LD
AD
ST
ST

?

1 LDAXR W2, [X11]
| CBNZ

W2,Loop
W3, #1
W4, W3, [X1 ]

‘W4, Loop

W5, [%Q]]

)

W5, W5, #2.._

W5, [X01]
&
WZR, [X11]

TXBEGIN
LDR W6, [X11]
CBZ W6,Crit
TXABORT

Crit:

MOV W7, #1
STR W7, [X0]

| “TXEND

_/
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‘Loop: Il TXBEGIN A
v o 1 LDAXR W2, [X1] 3 LDR W6, [X11]
5 CBNZ W2,Loop ) CBZ W6,Cri1it
lock = 1. MOV W3, # 3| TXABORT
W = o 4 STXR W4, W3, [X1]
. CBNZ W4,Loop || Crit:
W3 = 1 s ~N
wa = o (2 LDR  W5,[X0] MOV W7, #1
WE = o ADD W5 W5, #2 STR W7, [X0]
WE = 0 STR W5, [X0]
N7 = 1 STLR WZR, [X11] . TXEND y
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lock

S = O

W2
W3
W4
W5
W6

W7

¥

-
-
-
-
-

P
Loop:

1 LDAXR W2, [X1 ]
s CBNZ W2,Loop

v MOV W3, #T

144 STXR  W4,W3, [X1]
.1 CBNZ W4, Loop
12 LDR W5, [X0]

-ADD W5, W5, #2
5'STR W5, [X0]

_ 'STLR WZR, [X11]

\

DANEAN

" TXBEGIN A
3 LDR W6, [X11
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

L TXEND W,
Ar'm Research



This Armv8 acquire-exclusive spinlock is safe, individually

Elided locks using only transactions are safe, individually

The combination is unsound: the characteristic that makes this
spinlock safe (the lock variable must be written-to) is exactly
the feature that lock elision takes advantage of
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“[the] correctness [of lock elision] is
guaranteed without any dependence on
memory ordering”

[Rajwar and Goodman, MICRO 2001]



<
Il
S

lock = 0

’Loop:
1 LDAXR W2, [X1]]
s CBNZ W2,Loop
MOV W3, #1
STXR W4, W3, [X11]
CBNZ W4, Loop
(2 LDR W5, [X0]
ADD  W5,W5,#2
STR W5, [X01]
STLR  WZR, [X11]

) + Lock

_ Critical
Region

Vital assumption:
lock acquisition
happens-before
any access of the
critical region

Ar'M Research



A seven(teen) year-old counterexample

2001: Rajwar and Goodman introduce lock elision
2011: Acquire-release introduced to Armv8

2018: Lock elision counterexample
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Replace excls ...
withv8.1 AL
(acg-rel)
atomic

nsert DMB =~
petween

ock() and
critical region

-
-
~—a
-
-

i

LDAXR W2, [X1]]

\
\
\
\
\
\
\
N
\
\
\
\
\

MOV
STXR
CBNZ

LD
AD
ST
ST

o)
D
o)

_R

W2,Loop
W3, #1

W4 W3, [X1]
W4, Loop
W5, [X0 ]
W5, W5, #2
W5, [X0 ]
WZR, [X1 ]

TXBEGIN
LDR W6, [X1]]
CBZ W6,Crit
TXABORT

Crit:
MOV W7, #1
STR W7, [X0]

TXEND
Ar'm Research



Key ideas and related work

Axiomatic framework and tools “Transactions in Relaxed Memory
[Alglave et al., TOPLAS 2014] Architectures”, [Dongol et al., POPL
Memalloy tool for automatically 2018]

comparing memory models https://bit.ly/2xJvbeT

[Wickerson et al., POPL 2017]

Litmus test minimality [Lustig et al.,
ASPLOS 2017]

— Automated tool support for
empirical testing and bounded
verification
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https://bit.ly/2xJvbcT

Our paper

TM extensions of x86, Power, Armv8, and C++ axiomatic memory models
Formal models backed by automated tooling for

Synthesis of minimal tests for empirical testing
Bounded verification of TM-related transformations and properties

Resulting in the discovery of

Unsoundness of lock elision wrt an Armv8 spinlock impl.
Ambiguity in Power TM specification

Proposed simplification to C++ TM specification

... (more in paper)
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