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Architecture: fundamental contract 
between hardware/so!ware



Multiprocessor program

Tn-1T1T0 ... a sequence 
of assembly 
instructions 
(ADD, CMP, 
B, LDR, STR,
…)

Essential Question: What 
values can this load return?
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ISA Changes: TXSTART, TXCOMMIT, TXABORT, TXTEST

Impact on Memory Model

Interaction with exceptions, virtualisation,
vector-extensions, debug, …

Unintended consequences
- KASLR attack [JLK16]
- Prime+Abort [DKP+17]

Iceberg Photomontage (Uwe Kils) 
(CC BY-SA 3.0)



- Principled method for refining TM models
  - x86, Power, Armv8, C++
  - Automatic generation of minimal conformance testsuites
  - Transferring this technique to engineers

- The tricky case of aborting transactions

This Talk
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The set of all executions
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The set of all executions
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executions [LWP+17]
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The set of all executions

N

Finding minimal 
disallowed 
executions [LWP+17]

N is stronger-than M

M is weaker-than N

Finding a 
distinguishing 
execution in this 
set M\N [WBS+17]

M

E.g., Let M=x86 and N=SC
Then M\N includes the store-buffering execution



Combine [LWP+17, WBS+17]

Base+TM

Base (e.g, x86)

SC

TSC

Stronger

Weaker

Forbid tests

Allow tests

Find minimal 
distinguishing 
executions

Run on HW 
and use 

results to 
refine model





- Experimentally validated x86 TSX and Power TM models

- Proposals for Armv8 and C++ TM extensions

- Small additions to each model
  - Strong isolation
  - Transaction ordering (including implicit barriers)
  - Transaction propagation (Power-only)

- Methodology transferred to architecture-validation team in Arm

Results



Failing Transactions

successful failing



  TXSTART fail 
  // …
  // Body
  // …
  TXCOMMIT

fail:
  // …
  // Fail handler
  // …

fail => rollback state
and branch to handler



Essential Problem

R[y]=1

R[x]=0

po

Abort causes state 
rollback: how do we 
get visibility inside 

a failing tx?



  TXSTART fail 
  // …
  // Body
  // …
  TXCOMMIT

fail:
  // …
  // Fail handler
  // …

fail => rollback state
and branch to handler



  TXSTART fail 
  // …
  // Body
  // …
  TXABORT #VAL

fail:
  // …
  // Fail handler (TXSTATUS.reason==VAL)
  // …

fail => rollback state
and branch to handler



Failing Transactions

a: W[x]=1 c: R[y]=0

d: R[x]=1

rffr

po

  TXSTART fail
  LDR W0, [X1] // c
  LDR W2, [X3] // d
  // if W0==0 && W2==1
  TXABORT #1
  // else
  TXABORT #0
fail:
  // TXSTATUS.reason==1

b: W[y]=1

dmb



- Transactional lock elision correctness

- Specifying TM operationally

- Fairness and forward-progress

- Interaction with PTW, exceptions, …

- What about Opacity?

Future Work



- Automatic generation of minimal conformance testsuites
  - Minimality (close to the boundary)
  - Distinguishing
  - Automated
  - Output is very understandable
 
- Value of not-observing a forbidden test?
- Value of not-observing an allowed test?

Reflection



We’re hiring!

The security group is interested in the design, implementation and 
application of testing and verification at all levels of the system stack

Senior Formal Verification Researcher
Specifying and verifying real-world systems
www.arm.com/careers (search: 10720)

Finally

Alastair Reid
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