
©	2017	Arm	Limited		

Reasoning	about	
Transac9onal	Memory	

Transi9oning	ideas	from	academia	to	industry	
	

Nathan	Chong,	John	Wickerson	and	Tyler	Sorensen	

FMATS-5	
21	September	2017	

Architecture: fundamental contract
between hardware/so!ware

Multiprocessor program

Tn-1T1T0 ... a sequence
of assembly
instructions
(ADD, CMP,
B, LDR, STR,
…)

Essential Question: What
values can this load return?

Memory Models

Stronger

Weaker

Sequential Consistency

x86 (TSO)

Alpha

Power ARM

ARM v8.0

RISC-V

Shared
Memory

Tx0

Tx1

Transactional Memory: Optimistic Concurrency

Shared
Memory

Tx0

Transactional Memory: Optimistic Concurrency

Conflict!

Tx1

Shared
Memory

Rollback Tx0
Commit Tx1

Transactional Memory: Optimistic Concurrency

Tx1

Shared
Memory

Transactional Memory: Optimistic Concurrency

Replay Tx0

ISA Changes: TXSTART, TXCOMMIT, TXABORT, TXTEST

Impact on Memory Model

Interaction with exceptions, virtualisation,
vector-extensions, debug, …

Unintended consequences
- KASLR attack [JLK16]
- Prime+Abort [DKP+17]

Iceberg Photomontage (Uwe Kils)
(CC BY-SA 3.0)

- Principled method for refining TM models
 - x86, Power, Armv8, C++
 - Automatic generation of minimal conformance testsuites
 - Transferring this technique to engineers

- The tricky case of aborting transactions

This Talk

1,1 1,0 0,1 0,0

Final values of r0,r1

SC

x86

✓ ✗✓ ✓

✓ ✓✓ ✓

tx { tx {
 x=1; y=1;
 r0=y; r1=x;
} }

1,1 1,0 0,1 0,0

Final values of r0,r1

SC

x86

✓ ✗✓ ✓

✓ ✓✓ ✓
Store
Buffer

tx { tx {
 x=1; y=1;
 r0=y; r1=x;
} }

tx { tx {
 x=1; y=1;
 r0=y; r1=x;
} }

1,1 1,0 0,1 0,0

Final values of r0,r1

SC

x86

x86+TM

✓ ✗✓ ✓

✓ ✓✓ ✓

✗ ✗✓ ✓

W[x]=1

R[y]=1

W[y]=1

R[x]=1

po

rf

po

rf

W[x]=1

R[y]=1

W[y]=1

R[x]=0

po

rf

po

W[x]=1

R[y]=0

W[y]=1

R[x]=1

popo

rf

W[x]=1

R[y]=0

W[y]=1

R[x]=0

popo

 x=1; y=1;
 r0=y; r1=x;

fr

frfr

fr

✓ ✗✓ ✓

✓ ✓✓ ✓

SC

x86

The set of all executions

M

The set of all executions

M

Finding minimal
disallowed
executions [LWP+17]

W[x]=1

R[y]=0

W[y]=1

R[x]=0

popo

fr

fr

W[x]=1

R[y]=0

W[y]=1

R[x]=0

fencefence

fr

fr

Allow Forbid

W[x]=1

R[y]=0

W[y]=1

R[x]=0

fence
fence
fence

fr

fr

W[x]=1

R[y]=0

W[y]=1

R[x]=0

fence
fence

fence

fr

fr

⊑
⊑

⊑

The set of all executions

M

Finding minimal
disallowed
executions [LWP+17]

The set of all executions

N

Finding minimal
disallowed
executions [LWP+17]

N is stronger-than M

M is weaker-than N

M

The set of all executions

N

Finding minimal
disallowed
executions [LWP+17]

N is stronger-than M

M is weaker-than N

Finding a
distinguishing
execution in this
set M\N [WBS+17]

M

The set of all executions

N

Finding minimal
disallowed
executions [LWP+17]

N is stronger-than M

M is weaker-than N

Finding a
distinguishing
execution in this
set M\N [WBS+17]

M

E.g., Let M=x86 and N=SC
Then M\N includes the store-buffering execution

Combine [LWP+17, WBS+17]

Base+TM

Base (e.g, x86)

SC

TSC

Stronger

Weaker

Forbid tests

Allow tests

Find minimal
distinguishing
executions

Run on HW
and use

results to
refine model

- Experimentally validated x86 TSX and Power TM models

- Proposals for Armv8 and C++ TM extensions

- Small additions to each model
 - Strong isolation
 - Transaction ordering (including implicit barriers)
 - Transaction propagation (Power-only)

- Methodology transferred to architecture-validation team in Arm

Results

Failing Transactions

successful failing

 TXSTART fail
 // …
 // Body
 // …
 TXCOMMIT

fail:
 // …
 // Fail handler
 // …

fail => rollback state
and branch to handler

Essential Problem

R[y]=1

R[x]=0

po

Abort causes state
rollback: how do we
get visibility inside

a failing tx?

 TXSTART fail
 // …
 // Body
 // …
 TXCOMMIT

fail:
 // …
 // Fail handler
 // …

fail => rollback state
and branch to handler

 TXSTART fail
 // …
 // Body
 // …
 TXABORT #VAL

fail:
 // …
 // Fail handler (TXSTATUS.reason==VAL)
 // …

fail => rollback state
and branch to handler

Failing Transactions

a: W[x]=1 c: R[y]=0

d: R[x]=1

rffr

po

 TXSTART fail
 LDR W0, [X1] // c
 LDR W2, [X3] // d
 // if W0==0 && W2==1
 TXABORT #1
 // else
 TXABORT #0
fail:
 // TXSTATUS.reason==1

b: W[y]=1

dmb

- Transactional lock elision correctness

- Specifying TM operationally

- Fairness and forward-progress

- Interaction with PTW, exceptions, …

- What about Opacity?

Future Work

- Automatic generation of minimal conformance testsuites
 - Minimality (close to the boundary)
 - Distinguishing
 - Automated
 - Output is very understandable

- Value of not-observing a forbidden test?
- Value of not-observing an allowed test?

Reflection

We’re hiring!

The security group is interested in the design, implementation and
application of testing and verification at all levels of the system stack

Senior Formal Verification Researcher
Specifying and verifying real-world systems
www.arm.com/careers (search: 10720)

Finally

Alastair Reid

[AMT14] Herding cats: Modelling, Simulation, Testing, and Data-mining for
Weak Memory (Alglave, Maranget, Tautschnig)
[CMF+13] Robust Architectural Support for Transactional Memory in the
Power Architecture (Cain et al.)
[Deacon17] ARMv8.0 Application Level Memory Model (Deacon)
[DS09] Strong Isolation is a Weak Idea (Dalessandro, Sco!)
[HM93] Transactional Memory: Architectural Support for Lock-Free Data
Structures (Herlihy, Moss)
[LWP+17] Automatic Synthesis of Comprehensive Memory Model Litmus
Test Suites (Lustig et al.)
[MBL06] Subtleties of Transactional Memory Atomicity Semantics (Martin,
Blundell, Lewis)
[WBS+17] Automatically Comparing Memory Consistency Models
(Wickerson et al.)

References

©	2017	Arm	Limited		

Reasoning	about	
Transac9onal	Memory	

Transi9oning	ideas	from	academia	to	industry	
	

Nathan	Chong,	John	Wickerson	and	Tyler	Sorensen	

FMATS-5	
21	September	2017	

	Title
	Architecture
	Weak Memory
	TM
	TM 2
	TM 3
	TM 4
	TM Changes
	Schedule
	SB
	SB 2
	TxSB
	Executions
	Axiomatic memory model
	Axiomatic memory model 2
	SB strengthening
	Axiomatic memory model 3
	Distinguishing 3
	Distinguishing 5
	Distinguishing 4
	Key Idea
	x86 Results
	Results
	Failing Txs
	Instructions
	Failing Txs 2
	Instructions 3
	Instructions 2
	Failing Tx WRC 2
	Future Work
	Reflections
	Plug
	References
	End

