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Implementing and Evaluating Candidate-Based
Invariant Generation

Adam Betts, Nathan Chong, Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema

Abstract—The discovery of inductive invariants lies at the heart of static program verification. Presently, many automatic solutions to
inductive invariant generation are inflexible, only applicable to certain classes of programs, or unpredictable. An automatic technique
that circumvents these deficiencies to some extent is candidate-based invariant generation, whereby a large number of candidate
invariants are guessed and then proven to be inductive or rejected using a sound program analyzer. This paper describes our efforts to
apply candidate-based invariant generation in GPUVerify, a static checker for programs that run on GPUs. We study a set of 383 GPU
programs that contain loops, drawn from a number of open source suites and vendor SDKs. Among this set, 253 benchmarks require
provision of loop invariants for verification to succeed.
We describe the methodology we used to incrementally improve the invariant generation capabilities of GPUVerify to handle these
benchmarks, through candidate-based invariant generation, using cheap static analysis to speculate potential program invariants. We
also describe a set of experiments that we used to examine the effectiveness of our rules for candidate generation, assessing rules
based on their generality (the extent to which they generate candidate invariants), hit rate (the extent to which the generated candidates
hold), worth (the extent to which provable candidates actually help in allowing verification to succeed), and influence (the extent to which
the success of one generation rule depends on candidates generated by another rule). We believe that our methodology may serve as
a useful framework for other researchers interested in candidate-based invariant generation.
The candidates produced by GPUVerify help to verify 231 of the 253 programs. This increase in precision, however, makes GPUVerify
sluggish: the more candidates that are generated, the more time is spent determining which are inductive invariants. To speed up this
process, we have investigated four under-approximating program analyses that aim to reject false candidates quickly and a framework
whereby these analyses can run in sequence or in parallel. Across two platforms, running Windows and Linux, our results show
that the best combination of these techniques running sequentially speeds up invariant generation across our benchmarks by 1.17×
(Windows) and 1.01× (Linux), with per-benchmark best speedups of 93.58× (Windows) and 48.34× (Linux), and worst slowdowns
of 10.24× (Windows) and 43.31× (Linux). We find that parallelizing the strategies marginally improves overall invariant generation
speedups to 1.27× (Windows) and 1.11× (Linux), maintains good best-case speedups of 91.18× (Windows) and 44.60× (Linux), and,
importantly, dramatically reduces worst-case slowdowns to 3.15× (Windows) and 3.17× (Linux).

Index Terms—formal verification; GPUs; invariant generation
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1 INTRODUCTION

An invariant is a property that captures program behav-
iors by expressing a fact that always holds at a particular
program point. Invariants are vital to static verification
tools for reasoning about loops and procedure calls in
a modular fashion [1]. Such reasoning requires proving
that invariants are inductive. In the case of loops this
means that they hold on entry to the loop (the base case),
and that if they hold at the start of an arbitrary iteration
of the loop, they also hold at the end of the iteration (the
step case).

The automatic discovery of inductive invariants is a
challenging problem that has received a great deal of
attention from researchers [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. A flexible solution is offered by candidate-
based invariant generation [5], [13] whereby a large num-
ber of candidate invariants (henceforth, just candidates)
are speculated through simple rules (e.g. based on pat-
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terns observed in the abstract syntax tree of a program)
and are then checked using formal verification methods.
The output is a subset of the candidates that can be
proven to hold; if all candidates are rejected then the
weakest invariant, true, is returned.

Although candidate-based invariant generation is
popular in several static verification tools, no general
methodology exists to guide the implementation and
evaluation of such methods. We address this problem in
this paper by describing the systematic manner in which
we incorporated new candidate generation rules into
GPUVerify [14], a static verification tool for programs
that have been designed to run on Graphics Processing
Units (GPUs), and by proposing a set of questions that
allow rules to be comprehensively evaluated, irrespec-
tive of the application domain. Our evaluation criteria
broadly assess whether rules produce inductive invari-
ants, whether there are dependencies among rules, and
the extent to which rules help to verify programs.

We applied the proposed evaluation criteria to GPU-
Verify using a set of 383 GPU programs collected from a
variety of sources. This endeavor led to three interesting
discoveries. First, the rules as a whole have greatly
increased the accuracy of GPUVerify, helping to verify
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231 out of 253 GPU programs where loop invariants
are required. Second, most rules in GPUVerify are in-
dependent of each other: if a rule produces inductive
invariants, then the proof of those candidates can be es-
tablished in isolation from inductive invariants of other
rules. Third, some rules in GPUVerify are redundant
because they no longer produce candidates that are
essential to verify a single GPU program: they have been
superseded by more general rules.

Increased precision, however, has come at a price:
GPUVerify has become less responsive with the intro-
duction of more rules, because the more candidates
that are speculated, the more time is spent determining
whether those candidates are actual inductive invariants.
In one specific case, a GPU program that verified within
10 minutes when no invariants were speculated, could
no longer be verified within 30 minutes due to the
overhead of candidate-based invariant generation. To
counter the performance lag, we have investigated four
under-approximating program analyses whose aim is to
refute false candidates quickly, and we have devised a
framework where several of these analyses can run ei-
ther in sequence or in parallel. Evaluating these techniques
on two different machines, running Windows and Linux,
respectively, we discovered that:

• In the best case, accelerating invariant generation
using a sequential combination of techniques sped
up invariant generation performance by 93.58×
(Windows) and 48.34× (Linux).

• In the worst case, attempts at sequential acceleration
did not pay off, slowing down invariant generation
by 10.24× (Windows) and 43.31× (Linux).

• Over all benchmarks, sequential acceleration sped
up invariant generation by 1.17× (Windows) and
1.01× (Linux).

• Parallelizing our strategies maintained good best
case speedups of 91.18× (Windows) and 44.60×
(Linux), while reducing worst-case slow downs to
3.15× (Windows) and 3.17× (Linux). The key benefit
of parallelization here is that it prevents a runaway
under-approximating analysis from severely delay-
ing invariant discovery.

• Overall, parallelization gave a marginally better
speedup across our benchmarks, of 1.27× (Win-
dows) and 1.11× (Linux).

The rather different results obtained for these distinct
platforms emphasize the importance of accounting for
measurement bias [15]: the operating system and pro-
gramming language runtime used to conduct program
analysis can have a noticeable impact on performance
results.

In summary, our main contributions are:

1) An account of a systematic approach to manually
deriving domain-specific rules for candidate-based
invariant generation. While the rules are specific to
the context of GPU kernel verification, we believe
the principled approach we have taken in their

discovery can be transferred to other domains.
2) An experimental study of generality, hit-rate,

worth, and influence of these candidate generation
rules. We believe that the metrics we present and
our experimental method can help to guide other
researchers in evaluating candidate-based invariant
generation techniques.

3) General strategies for accelerating candidate-based
invariant generation via under-approximating pro-
gram analyses, the application of parallel process-
ing to combine multiple strategies, and a large
experimental evaluation of these methods.

The remainder of the paper is structured as follows.
Necessary background material is provided in Section 2.
In Section 3, we outline some basic properties of the
GPU programs in our evaluation set and describe how
preconditions for each GPU program were procured. The
methodology to implement and to evaluate candidate-
based invariant generation appears in Section 4, includ-
ing new metrics for evaluation which we used to assess
the candidate generation rules we added to GPUVerify.
The measures undertaken to boost performance and an
evaluation thereof are contained in Section 5. We survey
related work in Section 6 and conclude in Section 7.

2 BACKGROUND

We give essential background on loop invariants and
candidate-based invariant generation in Sections 2.1
and 2.2. We then provide background on GPU kernels in
Section 2.3, and give an overview of the GPUVerify tool
for analyzing GPU kernels, explaining how GPUVerify
incorporates candidate-based invariant generation, in
Section 2.4.

2.1 Inductive loop invariants

A standard approach to reasoning about programs con-
taining loops, stemming from early work by Floyd [1],
is to apply a loop cutting transformation, replacing each
loop with a loop-free sequence of statements that over-
approximates the effects of the loop on the program
state. We recap the process of reasoning about a program
via loop cutting, which is described in more technical
detail elsewhere (e.g. [16]).

To cut a loop, we need a property—a loop invariant—
that holds each time the loop head is reached during
execution.

The transformation is depicted in Figure 1: the input
loop and its invariant φ on the left are turned into
the loop-free sequence on the right. In the transformed
sequence, the loop invariant is checked in two places.
The first check ensures that the property is satisfied on
entry to the loop (the base case), while the second check
ensures the property is maintained by each execution
of the loop body (the step case); if both can be proven,
then the invariant is inductive. Observe that the step case
requires the program to be in an arbitrary state which
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while (c)
invariant φ {
B;

}

assert φ; // (base case)
havoc modset(B);
assume φ;
if (c) {
B;
assert φ; // (step case)
assume false;

}

Fig. 1. The loop cutting transformation [16] used by
GPUVerify. The loop on the left is transformed into the
loop-free sequence of statements on the right.

i := 0;
j := 0;

while (i < 100)
invariant j = 2i;
invariant j ≤ 200;

{
i := i + 1;
j := j + 2;

}

assert j = 200;

Fig. 2. An example code snippet annotated with loop
invariants that allow proving the assertion j = 200.

already satisfies the loop invariant; this establishes the
induction hypothesis. The arbitrary state is obtained by
first assigning a non-deterministic value to each variable
possibly modified in the loop body (using the havoc
modset(B) statement), and then assuming the loop
invariant (using the assume φ statement). If the loop
guard evaluates to true, the step case then checks that
no assertions fail during execution of the loop body B,
and that execution of the body results in a state that
satisfies the loop invariant.

Example
To illustrate inductive loop invariants, consider the an-
notated code snippet in Figure 2, which repeatedly in-
crements the variables i and j.

The first invariant, j = 2i, is inductive in isolation.
The invariant holds trivially on entry to the loop when
i = j = 0 (the base case), and is maintained by the loop
body provided that the invariant and loop guard hold
before the body executes (the step case):

j = 2i ∧ i < 100⇒ (j + 2) = 2(i+ 1) .

The second invariant is not inductive in isolation since
j ≤ 200 and i < 100 do not imply (j+2) ≤ 200. However,
the invariant is inductive in conjunction with j = 2i:

j ≤ 200 ∧ j = 2i ∧ i < 100⇒ (j + 2) ≤ 200 .

The two invariants together with the negation of the
loop guard suffice to prove the assertion near the bottom
of Figure 2:

j = 2i ∧ j ≤ 200 ∧ i ≥ 100⇒ j = 200 .

2.2 Candidate-based invariant generation
GPUVerify employs candidate-based invariant genera-
tion to compute inductive loop invariants automatically.
The technique speculates a finite set of potential invari-
ants, called candidates, that must be checked to ensure
that they are, in fact, inductive invariants. Checking is
done by means of the Houdini algorithm [5], which
returns the unique, maximal conjunction of candidates
that form an inductive invariant (see [13] for a proof of
this property). The conjunction may be over the entire
set of candidates (if all are proven to be inductive), but
is more likely to be over a subset of these, due to some
speculated candidates being false, or being true but not
inductive. In the worst case, the maximal conjunction
returned by Houdini is over the empty set, meaning that
the trivial invariant, true, is returned.

We provide some more details regarding the two
phases of this approach.

2.2.1 Phase one: the guess phase
This phase supplies the candidates for a given program.
Guessing is domain specific and is free to use any static,
dynamic, or hybrid technique. A simple example is the
use of syntactic checks that generate candidates based on
pattern matching in the abstract syntax tree. Importantly,
this phase can be aggressive, generating a large set of
candidates: false candidates cannot introduce unsound-
ness because the Houdini algorithm (in the check phase)
will simply refute them. Section 4 discusses the kinds of
guesses performed by GPUVerify.

2.2.2 Phase two: the check phase
Beginning with a full set of candidates, Houdini removes
candidates that cannot be proven, until a fixpoint is
reached. A candidate may fail to be proven because
the candidate is actually false, or because, despite being
true, it cannot be proven to be inductive. We refer to a
candidate that Houdini removes as unprovable, and say
that Houdini refutes such a candidate. We say that a
candidate that forms part of the maximal conjunction
returned by Houdini is provable. Here, “unprovable”
simply means that the invariant could not be proven to
be inductive with respect to the current set of candidates.
If a candidate is true but unprovable, the candidate
might become provable in the context of a larger set of
candidates; this is because, as illustrated by the example
of Section 2.1, proving that an invariant is inductive can
hinge on the availability of other supporting invariants.

Houdini is sound, deterministic, and terminating, as-
suming each call to the underlying SMT solver returns
(which is not guaranteed if the logic used to encode veri-
fication conditions is undecidable). For single-procedure
programs, such as those analyzed by GPUVerify, the
number of SMT solver calls is proportional to the num-
ber of candidates because Houdini only considers con-
junctions of candidates.

Let us demonstrate Houdini using Figure 3, which
gives a program that repeatedly cycles the values 1, 2, 3
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i := 0;
x := 1;
y := 2;
z := 3;

while (i < 10000)
candidate C0 : i = 0;
candidate C1 : i 6= 0;
candidate C2 : 0 ≤ i;
candidate C3 : 0 < i;
candidate C4 : i < 10000;
candidate C5 : i ≤ 10000;
candidate C6 : x 6= y;

{
temp := x;
x := y;
y := z;
z := temp;
i := i + 1;

}

C0
C1
C2
C3
C4
C5
C6

C0
C1
C2
C3
C4
C5
C6

C0
C1
C2
C3
C4
C5
C6

C0
C1
C2
C3
C4
C5
C6

refute
C1, C3

refute
C0, C6

refute
C4

returns
invariant

C2 ^ C5

fixpoint
no further
refutations

Initially Iteration 1 Iteration 2 Iteration 3

Fig. 3. An example program and a run of the Houdini algorithm, showing the candidates refuted at each iteration until
a fixpoint is reached.

around the variables x, y, z. We assume the guess phase
has speculated the candidates C0 through C6. Houdini
must now compute the maximal inductive invariant that
is a conjunction of a subset of these candidates. The
figure shows how the set of candidates evolves during
each iteration of the algorithm. During the first iteration,
Houdini removes C1 and C3 because they do not hold
on loop entry (the base case). No further candidates can
be removed during this iteration: in the base case all
other candidates hold, and the step case holds vacuously
because candidates C0 and C1, which are mutually in-
consistent, are both assumed to hold. During the second
iteration, the candidates C0 and C6 are refuted because
they are not preserved by the loop. To see why C6 is
not preserved, consider a state in which x = 1 and
y = z = 2: this state satisfies C6 on loop entry, but not
after execution of the loop body. During the third iter-
ation, the candidate C4 is refuted. This candidate could
not be removed until C0 was removed since assuming C0

allowed C4 to be preserved by the loop. This illustrates
dependencies between candidates, where the refutation
of a specific candidate is only possible after refutation of
certain other candidates. A fixpoint is reached during the
final iteration: the remaining candidates, C2 and C5, form
an inductive invariant, and Houdini returns C2 ∧ C5.

It is worth noting that candidate C6 is an invariant
of the loop; it is refuted by Houdini because it is not
inductive, as described above. If the candidates x 6= z
and y 6= z also had been provided initially then, because
these candidates are mutually inductive with C6, all
three would have been returned by Houdini, in addition
to C2 and C5.

2.3 GPU kernels
A GPU kernel is a program, typically written in
CUDA [17] or OpenCL [18], that enables a general-

purpose computation to be offloaded to a GPU.1 At run
time, the kernel is launched with a thread configuration
that specifies both the number of threads to run and the
organization of the threads in blocks of size blockDim,
where the blocks form a grid of size gridDim (both
blockDim and gridDim may be multi-dimensional).
Each thread is parameterized by its thread and block
identifiers (threadIdx and blockIdx), which allow it
to compute memory addresses and make branch de-
cisions unique to that thread. Threads have access to
thread-private memory and memory regions that are
shared at the block and grid level. Threads in the same
block can communicate through shared memory and
synchronize using barrier operations.

GPU kernels are susceptible to data races and barrier di-
vergence, which are programming errors. A data race oc-
curs when two different threads access the same location
in shared memory, at least one access is a write, and there
is no intervening synchronization. Barrier divergence
happens when threads reach distinct syntactic barriers
or when the same barrier is reached under divergent
control flow. Various techniques have been proposed to
assess whether GPU kernels are prone to, or free from,
these errors. We next describe the GPUVerify tool, which
is the focus of study in this paper, and implements one
of these techniques. We survey related approaches in
Section 6.

2.4 GPUVerify

The GPUVerify tool [14], [19], [20] has been designed to
automatically prove absence of data races and barrier di-
vergence for CUDA and OpenCL kernels. The tool takes

1. Throughout the paper we present examples using notation from
the CUDA programming model, though the kernels that we study are
written in both CUDA and OpenCL.
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FRONTEND HOUDINI

Invariant
Generation

BACKEND

Boogie  Verification
Engine

Parallel GPU Kernel

Pass / Fail / Timeout

Sequential
Program

Candidates

Section 4 Section 5

Kernel Transformation
Candidate Generation

Fig. 4. The architecture of GPUVerify. The shaded parts
of the pipeline—candidate generation and accelerating
Houdini—are the focus of this paper.

a kernel source file as input, and generates a sequential
program in the Boogie intermediate verification lan-
guage [21] annotated with automatically-generated as-
sertions. The translation from kernel to Boogie program
is performed in manner such that if the Boogie program
is free from assertion failures then the original kernel is
free from data races and barrier divergence. The transla-
tion is described elsewhere in a tutorial fashion [22] and
via a formal operational semantics [19], [20]. It involves
generating a program that models the execution of a
kernel by a pair arbitrary threads according to a single,
fixed schedule. Instrumentation variables are used to
detect races between the two threads, and the possible
effects of additional threads are over-approximated via
abstraction. The barrier-synchronous nature of the GPU
programming model means that proving correctness of
the single-schedule sequential program for all possible
choices of thread identities suffices to show that the
kernel is free from data races and barrier divergence for
all thread schedules. This allows well-established tech-
niques for proving correctness of sequential programs
to be leveraged in order to prove race- and divergence-
freedom for highly parallel GPU kernels.

We note that GPUVerify performs full function in-
lining by default to increase verification precision. In
practice this is possible because recursion and function
pointers are prohibited in OpenCL and rare in CUDA.

The architecture of GPUVerify is depicted in Figure 4.
The component labeled ‘FRONTEND’ is responsible for
transforming a GPU kernel into a corresponding se-
quential Boogie program, and the ‘BACKEND’ compo-
nent uses the Boogie verification engine [23] to verify
the transformed kernel. Boogie uses the loop cutting
transformation discussed in Section 2.1 to abstract loops
according to provided invariants, and calls upon an
SMT solver, such as Z3 [24] or CVC4 [25], to check the
resulting verification conditions that are generated. The
‘HOUDINI’ component of GPUVerify uses the Houdini
algorithm, described in Section 2.2, to automatically
compute inductive loop invariants from a set of can-
didate invariants, which are speculated by GPUVerify’s
front-end.

GPUVerify is sound but incomplete: modulo bugs in
the GPUVerify implementation, and a number of prag-
matic assumptions made by the tool, a verified kernel is

indeed guaranteed to be free from the sorts of defects
that GPUVerify checks. However, errors reported by the
tool may be false positives. These spurious errors can arise
due to:

• abstract handling of floating-point operations,
• abstraction of the shared state, and
• insufficiently strong loop invariants.

In practice, we find that the last of these errors is the
most common limitation of the tool, and the strength of
the generated loop invariants is entirely governed by the
effectiveness of our implementation of candidate-based
invariant generation.

3 BENCHMARK SUITE

We study invariant generation in GPUVerify using a set
of 383 benchmarks collected from nine sources:

• 54 OpenCL kernels from the AMD Accelerated Par-
allel Processing SDK v2.6 [26],

• 98 CUDA kernels from the NVIDIA GPU Computing
SDK v5.0 and v2.0 [27],

• 16 CUDA kernels hand-translated from Microsoft’s
C++ AMP Sample Projects [28],

• 20 CUDA kernels originating from the gpgpu-sim
benchmarks [29],

• 15 OpenCL kernels from the Parboil suite v2.5 [30],
• 18 OpenCL kernels from the Rodinia suite v2.4 [31],
• 50 OpenCL kernels from the SHOC suite [32],
• 88 OpenCL kernels generated by the PPCG parallel

code generator [33] from the PolyBench/C bench-
marks v4.0a [34], and

• 24 OpenCL kernels from the Rightware Basemark CL
suite v1.1 [35].

We refer to the above benchmarks as the LOOP set.
All of the suites are publicly available except for Base-

mark CL, which was provided to us under an academic
license. The collection covers all the publicly available
GPU benchmark suites of which we were aware at the
start of our study, and we have made the versions of the
kernels we used for our experiments available online.2

The kernel counts do not include 330 kernels that we
manually removed:

• 82 kernels are trivially race- and divergence-free
because they are executed by a single thread.

• 10 kernels use either inline assembly, function point-
ers, thread fences, or CUDA surfaces, which GPUVer-
ify currently does not support.

• 40 kernels are data-dependent (i.e. their control
flow depends on array inputs to the kernel), which
requires refinements of the GPUVerify verification
method that cannot be applied automatically [36].

• 198 kernels are loop free and, hence, do not require
invariant generation.

2. http://multicore.doc.ic.ac.uk/tools/GPUVerify/IEEE TSE/
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TABLE 1
Basic loop statistics of the LOOP set.

Number of loops 1 2 3 4 5 6 7+

Kernels 168 93 52 34 19 2 15

Maximum loop-nest depth 1 2 3 4 5

Kernels 243 67 55 14 4

3.1 Loop properties
To discern the complexity of the kernels in the LOOP set,
we counted the number of loops and the loop-nesting
depth of each kernel after full inlining had been applied
(recall from Section 2.4 that GPUVerify performs full
inlining by default). Having many loops often makes
a program hard to verify, and nested loops can be a
particular challenge. In the case of a sequence of loops,
proving that an invariant holds on entry to a given loop
may only be possible if a sufficiently strong invariant
is available for a preceding loop in the sequence; in the
case where loop L2 is nested inside loop L1, invariants
for L1 may be required to prove that invariants of L2 are
inductive, and vice-versa.

We summarize the loop statistics in Table 1. The ma-
jority of kernels (68%) only feature a single loop or a pair
of (possibly nested) loops, but there are still a significant
number of kernels (122) with a larger number of loops.
At the very extreme, the heartwall kernel from the
Rodinia suite features 48 loops that are syntactically
distinct, i.e. they do not arise as a result of inlining.

Nested loops occur in 37% of kernels. Deep loop-nests
are mostly found in the PolyBench/C kernels, with 42
of those kernels having a maximum loop-nest depth of
three, and 9 having a maximum loop-nest depth of four.
All kernels with a maximum loop-nest depth of five also
originate from this set.

3.2 Obtaining scalar kernel parameters
Most kernels in the LOOP set are designed to be race
free only for constrained thread configurations and input
values. These preconditions are often implicit and very
rarely documented, and any information that does exist
appears as informal source code comments. Unfortu-
nately, suitable preconditions must be communicated to
GPUVerify in order to avoid spurious error reports.

We were able to confidently add general preconditions
to some kernels by hand—kernels that we were familiar
with, or that were well-documented or sufficiently sim-
ple to understand at a glance. However, for the majority
of kernels we solved the above problem by discovering
constraints for kernel scalar parameters in the following
way:

1) We ran the application in which the kernel was
embedded and intercepted kernel calls using dy-
namic library instrumentation to note the input
parameters of each kernel. For OpenCL applica-
tions we used KernelInterceptor [37]. For CUDA

applications we used a similar prototype tool.3

Running the kernels in interception mode led to an
intercepted value for every kernel input parameter.

2) We ran GPUVerify on the kernel in bug-finding
mode, assuming the observed thread configuration
but with unconstrained formal parameters. In bug
finding mode, GPUVerify unrolls loops up to a
fixed depth of two to avoid the need for loop
invariants, thereby reducing the possibility of false
positives. If GPUVerify reported a possible data
race, and if on manual inspection of the race we
concluded that an unconstrained integer parameter
contributed to the conditions causing the race, we
added a precondition to constrain the value of the
parameter to the value intercepted for it. This step
was repeated until GPUVerify was satisfied; in the
extreme case this led to constraining all integer
parameters.

We only added integer preconditions, because GPU-
Verify handles floating-point and array data abstractly.
It is atypical for race freedom to require preconditions
on floating-point inputs, and cases where race freedom
is dependent on array preconditions requires manual
methods (see the earlier discussion regarding kernels
removed from our study).

The above process offers a pragmatic solution to gar-
ner a suitable but not overly constrained precondition,
although the most general precondition may be missed.
For example, in the case of the matrix transpose kernel
of Figure 5 (to be discussed in Section 4.2), the process
led to the precondition height = 8 being added for an
8×8 input matrix, instead of the more general height =
gridDim.y×TILE_DIM, which would allow us to also
prove the kernel correct for matrices of different sizes.
Another common case is for a GPU kernel to require
a scalar argument to have a value that is a power of
two within a particular range. Our interception-based
approach would constrain such a parameter to a particu-
lar power of two used at runtime, restricting subsequent
analysis of the kernel to that particular value.

We acknowledge that the form of kernel preconditions
can have an impact on invariant generation: a strong
precondition might facilitate the use of strong, easy-to-
infer loop invariants, while a weaker precondition might
necessitate more general, harder-to-infer invariants. Nev-
ertheless, equipping our kernels with a pragmatically-
obtained set of preconditions still led to a challenging
set of benchmarks for invariant generation.

After completing our study we reviewed the number
of preconditions inserted using the above methodology
(see Table 2). We found that 61% of kernels required
preconditions, and that on average one precondition was
required. The largest number of preconditions required
for a single kernel was 26 (for the heartwall kernel
from the Rodinia suite).

3. https://github.com/nchong/cudahook
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TABLE 2
Number of introduced preconditions.

Preconditions 0 1 2 3 4 5 6 7 8+

Kernels 151 90 86 37 11 5 0 2 1

4 CANDIDATE GENERATION IN GPUVERIFY

We now explain how we devised the rules that generate
candidates in GPUVerify, which was driven by the aim
of automatically verifying as many of our benchmark
programs as possible. We also propose several new met-
rics for evaluating candidate-based invariant generation,
and evaluate our rules across our benchmark set using
these metrics. In Section 4.1 we describe our strategy for
devising new candidate generation rules. In Section 4.2
we discuss, as an example, the intuition behind one of
the rules that we developed (the remaining rules are
outlined in Appendix A). In Section 4.3, we assess the
effectiveness of, and relationship between, the rules that
we devised. During this process we discovered a number
of defects in the GPU kernels we studied. We briefly
document these issues in Section 4.4.

4.1 Process for deriving candidate-generation rules

To gauge the need for invariant generation in GPUVerify
to prove the absence of data races and barrier diver-
gence, we attempted to verify each kernel in the LOOP
set without loop invariants being either manually or
automatically supplied. If a kernel verifies under these
conditions then we say the kernel is trivial; typically,
a trivial kernel has loops that either do not access the
shared state at all, or that access shared arrays that are
never written to by the kernel. We found 253 out of 383
kernels (65%) to be non-trivial, the majority of the LOOP
set. Hence, assuming these kernels are indeed correct
(and can be verified as such via suitable invariant anno-
tations), invariant generation is crucial to the precision
of GPUVerify.

The set of non-trivial kernels facilitated the design of
new rules as follows:

1) We randomly picked a small number of kernels
from the set, and manually determined a minimal
set of loop invariants that enabled their verification.

2) Each picked kernel was updated to include the
necessary loop invariants as user-defined invariants.

3) Common patterns were identified among the user-
defined invariants that might apply in a wider
setting. For each such pattern, we introduced a
candidate-generation rule to GPUVerify.

4) We removed any user-defined invariants that were
subsumed by the introduced rules.

We iterated the above process of invariant discovery
until all kernels in the LOOP set—bar five kernels which
we found to contain data races—could be verified au-
tomatically through a combination of invariants gener-
ated by our candidate-based approach and invariants

provided manually (or, in the case of PolyBench/C,
and as explained below, generated by a compiler). We
rigorously applied step 4 above to ensure that all re-
maining user-defined invariants were necessary in order
for verification to succeed using the candidate invari-
ants generated by GPUVerify, ensuring the removal of
any manually supplied invariants that were originally
necessary but subsequently subsumed by generated in-
variants.

The sketched process led to the development of 19
rules, summarized in Appendix A. In Section 4.2 we
explain how one such rule was developed.

Compiler-generated invariants for the PolyBench/C suite

The 88 kernels from the PolyBench/C suite were gen-
erated by PPCG [33], a polyhedral compiler equipped
with a back-end that can compile polyhedral code, and
some extensions thereof [38], into OpenCL.

Many of the machine-generated kernels feature a large
number of loops, in some cases deeply nested due to the
application of loop tiling program transformations. We
verified a selection of these kernels by manually working
out sufficient invariants, and found these invariants to
be divided into two sorts: basic invariants about loop
bounds (similar to the invariants required by many
other kernels) for which we had already devised suitable
candidate-generation rules, and intricate, specialized in-
variants related to the memory access patterns associated
with polyhedral code generation. For the latter invari-
ants we worked with the lead developer of PPCG to
add an option whereby the compiler can automatically
generate a program-wide invariant characterizing the
access patterns of all loops. Adding the option was
possible by virtue of the rich information regarding
memory access patterns available in PPCG, which it uses
to perform code generation. The invariants generated by
the compiler are independently checked by GPUVerify.
For more details see [39].

By combining the compiler-generated invariants re-
garding access patterns with invariants inferred by GPU-
Verify relating to loop bounds it was possible to verify
almost all PolyBench/C kernels. Because the compiler-
generated invariants are specific to this class of kernels,
and because generation of the invariants by the com-
piler is reliable, we decided not to propose candidate-
generation rules to speculate these invariants automati-
cally. There were four kernels that did not verify out-
of-the-box using this strategy. Each of these kernels
required invariants unique to that kernel and, hence, we
opted to supply these invariants manually.

4.2 Access breaking rule

As an illustrative example, we now describe a mem-
ory access pattern that we observed in a variety of
the kernels, outline the process by which we manually
derived invariants to characterize the access pattern, and
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#define TILE_DIM 4
#define BLOCK_ROWS 2

__global__ void transpose(float *odata, float *idata,
int width, int height) {

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;
int index_out = yIndex + height * xIndex;

for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index_out + i] = idata[index_in + i * width];

}
}
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Fig. 5. A matrix transpose example taken from the CUDA SDK. The right side depicts reads of idata and writes of
odata by block (1, 0) for i = 0 and i = 2. Note that the idata and odata arrays are disjoint.

comment on how these led to a candidate-generation
rule that automates our manual process.

Consider the matrix transpose kernel of Figure 5,
which is taken from the CUDA SDK [27]. The kernel
reads from an input matrix idata of dimension width
by height and writes to an output matrix odata. The
matrices are stored in row-major order, meaning that an
element Ax,y of a matrix A is stored in a linear array
at offset x + width × y. The kernel is invoked with
a 2-dimensional grid of 2-dimensional thread blocks,
with each block of size TILE_DIM×BLOCK_ROWS. Each
block is assigned a square tile of dimension TILE_DIM
of the input and output matrices. Individual threads
within a block stride along the assigned tile in incre-
ments of BLOCK_ROWS. During each iteration of the loop,
each block of threads copies TILE_DIM× BLOCK_ROWS
elements from idata to odata. For example, if the
matrix dimension is 8 × 8, with TILE_DIM = 4 and
BLOCK_ROWS = 2, then the kernel is invoked with a
2 × 2 grid of 4 × 2 blocks, and each block is assigned
a tile of 4 × 4 elements. The read and write assignment
of block (1, 0) is shown on the right side of Figure 5. In
the figure, we see e.g. that thread (1, 1) of block (1, 0)
assigns idata5,1 to odata1,5 and idata5,3 to odata3,5

when i equals 0 and 2, respectively.

Intuitively, GPUVerify checks for data race-freedom by
analyzing the intersection of read and write sets of all
distinct thread pairs. In this example, the kernel is free
from data races since idata is only ever read from,
and distinct threads write to distinct offsets of odata.
The loop invariants that we require must summarize the
writes to odata. If Wt denotes the set of all writes that
a thread t has issued, then a set of invariants that relates
Wt to its thread identifiers is useful because two distinct
threads must always have at least one block or thread
identifier that is distinct:

∀w ∈Wt. ((w / height) / TILE_DIM) = blockIdx.x
∧ ((w / height) % TILE_DIM) = threadIdx.x
∧ ((w % height) / TILE_DIM) = blockIdx.y
∧ ((w % height) % TILE_DIM) % BLOCK_ROWS

= threadIdx.y

The invariant is trivially satisfied on loop entry, be-
cause on entry Wt is empty for all threads. To see that the
invariant is maintained by the loop consider an arbitrary
write w from thread t to odata. The access will be
of the form index_out + i, where i is a multiple of
BLOCK_ROWS. In other words, w is of the form:

(blockIdx.x× height× TILE_DIM)
+ (threadIdx.x× height)
+ (blockIdx.y× TILE_DIM)
+ threadIdx.y
+ i

which shows that the invariant is indeed maintained.
We refer to the above type of invariant as access

breaking since the access pattern is broken down into
the components identifying thread t. We have derived
a candidate-generation rule to speculate access break-
ing invariants. For each memory access appearing in a
kernel, we use cheap abstract syntax tree-based pattern-
matching to determine whether the access uses thread
identifiers. If so, we trigger access breaking, which con-
sists of rewriting the access expression to generate a
possible equality for each of the components identifying
a thread.

The precise conditions under which GPUVerify trig-
gers access breaking, and the particular candidates that
this rule generates, are intricate and were devised in an
example-driven manner; for exact details please refer to
the RaceInstrumenter class in the GPUVerify source
code, and search for the accessBreak tag.

4.3 Evaluation of rules

GPUVerify presently has 19 rules for generating candi-
dates—see Appendix A for a short description of each
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of these rules. Here we evaluate the effectiveness of the
rules. In particular, we aim to provide answers to the
following questions:

• Rule generality: Do the rules cause candidate in-
variants to be generated for a variety of kernels?

• Rule hit rate: To what extent do the rules produce
provable candidates?

• Rule worth: How often are provable candidates
generated by a rule essential for precise reasoning?

• Rule influence: To what extent are the rules inde-
pendent, in terms of provability of the candidates
they generate?

• Increase in precision: For how many kernels does
candidate-based invariant generation make the dif-
ference between verification succeeding or failing?

This set of questions, and our systematic approach
to answering them experimentally, is one of the main
contributions of our work: the questions and methods
easily generalize beyond our domain of GPU kernel
verification, thus we believe they provide a framework
that will be useful to other researchers interested in
designing and evaluating candidate-based approaches to
invariant generation.

4.3.1 Experimental setup

The experiments in this section were conducted on a
machine with a 2.4GHz 4-core Intel Xeon E5-2609 pro-
cessor and 16GB of RAM, running Ubuntu 14.04 and
using CVC4 v1.5-prerelease, Clang/LLVM v3.6.2, and
Mono v3.4.0. In GPUVerify, we enabled user-defined
invariants and set the timeout to 30 minutes. We chose a
large timeout to allow more kernels to be explored, thus
yielding a larger evaluation. We enabled user-defined
invariants to ensure that, with all candidate generation
rules enabled, each kernel would verify. This was neces-
sary to meaningfully measure rule worth and rule influ-
ence in Sections 4.3.4 and 4.3.5, and reflects the current
state of GPUVerify where complex examples require a
combination of manually-supplied and automatically-
inferred invariants.

We removed 12 kernels from experiments reported
upon in this section—unless indicated otherwise—leav-
ing 372 kernels from the LOOP set. In the case of 11
of the 12 kernels, GPUVerify did not complete, even
with the generous timeout of 30 minutes. In the case
of one kernel GPUVerify ran out of memory. Among
these kernels, the timeouts and memory-out appear to
be due to: large invariants generated by the PPCG (5
Polybench/C kernels); loops that contain many accesses,
leading to a large number of access-related candidates
being generated and significant reasoning required to
prove race-freedom (4 gpgpu-sim kernels, plus one SHOC
kernel, which is the kernel that exhausts our memory
limit); the presence of a very large number of loops
(the Rodinia heartwall kernel); loops with an iteration
space that leads to hard-to-prove invariants being gener-
ated by the loopBound rule (1 kernel from the NVIDIA

TABLE 3
The number of kernels for which each rule triggers, and

the hit rate and essentiality of each rule.

Kernels triggering a rule
Rule Non-trivial Trivial Total Hit rate Essentiality

r0 70 0 70 74% 36
r1 204 7 211 89% 88
r2 30 0 30 83% 3
r3 30 0 30 60% 3
r4 85 7 92 59% 0
r5 141 6 147 99% 1
r6 81 3 84 100% 3
r7 46 0 46 91% 32
r8 184 6 190 75% 0
r9 238 17 255 47% 30
r10 143 6 149 87% 113
r11 46 0 46 91% 4
r12 103 0 103 49% 45
r13 114 2 116 52% 36
r14 50 5 55 40% 16
r15 50 5 55 29% 0
r16 46 0 46 4% 1
r17 14 0 14 4% 10
r18 7 0 7 90% 1

GPU Computing SDK v5.0, which in fact verifies when
no invariants are speculated).

With enough time and computing resources, we could
have included these kernels in our evaluation of the
new candidate generation rules. We decided not to so
that our experiments would complete within a feasible
time budget. Relatedly, we could have included the 82
race- and divergence-free kernels that we eliminated
from our test set as described in Section 3, since our
candidate generation rules would still potentially trigger
on these benchmarks. However, we preferred to restrict
our evaluation to multi-threaded examples where there
really is potential for concurrency-related problems.

4.3.2 Experiment: rule generality
Our first hypothesis was that the conditions under which
a rule triggers would be found in a variety of non-trivial
kernels but in few, if any, trivial kernels. To test this,
we recorded, for each rule, the number of trivial and
non-trivial kernels that contained at least one candidate
produced by that rule.

Columns 2–4 of Table 3 displays the results. We see
that the 130 trivial kernels rarely contain patterns that
trigger a rule. This is positive because trivial kernels
can be verified without the provision of any invariants,
and checking the provability of superfluous candidates
is likely to slow down the verification process. Overall,
most rules are neither too speculative (rule r9 is activated
by 255 kernels, the maximum) nor too bespoke (rule r17
is activated by 14 kernels, the minimum).4 We believe
this confirms that the process by which we introduced
rules into GPUVerify has merit.

4. We disregard rule r18 here, because the rule is tied to a partic-
ular GPUVerify command-line option that turns on an extension for
awareness of warp-level synchronization in CUDA [40]. The extension
is only enabled for the 9 kernels in the LOOP set.
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4.3.3 Experiment: rule hit rate
We further conjectured that a reasonable number of
candidates produced by a rule would be provable. We
scrutinized this hypothesis by counting the following for
each kernel in our evaluation set:

• the number of candidates produced by a rule, and
• the split for these candidates between those that are

provable and unprovable.
The hit rate of a rule is then the percentage of candidates
that are provable.

The results appear in the fifth column of Table 3.
One rule (r6) has a hit rate of 100%, and five rules (r1,
r5, r7, r11, r18) have hit rates close to 100%. We did
not expect to find this many rules with such high hit
rates because we designed our rules to guess candidates
aggressively, in general preferring to err on the side of
generating a large number of candidates (of which many
may turn out to be unprovable) to increase the chance
of generating a provable candidate in a scenario where
it is needed for verification to succeed. Conversely, we
see that rules r16 and r17 speculate poorly, indicating
that the conditions under which they trigger should be
refined. However, rule r17 is in danger of becoming too
specialized, as it is already unsuccessful at producing
candidates for many kernels; the rule only triggers in 14
cases.

4.3.4 Experiment: rule worth
We cannot conclude from the previous experiment that
rules with high hit rates are beneficial to verification. A
devious rule can generate trivially provable yet useless
candidates for any kernel. Hence, we wanted to know
whether rules produce constructive candidates that ac-
tually enable verification.

Our hypothesis was that there would be numerous
kernels whose verification depended on the candidates
generated by a particular rule, given that we engineered
rules in response to non-verifying kernels. We tested this
by observing whether GPUVerify reports differently for
a kernel after a rule had been disabled. Specifically, we
say that rule r is essential for a kernel if two conditions
are satisfied:

1) the kernel verifies when all rules are enabled, and
2) disabling all candidates generated by rule r causes

verification to fail or time out.
We counted the number of kernels for which each rule

is essential. The results are shown in the final column
of Table 3. The sum of the “essentiality” column is 422,
meaning that there are 422 distinct (kernel, rule) pairs
where a rule is essential for a kernel. Note that multiple
rules may be essential for the same kernel.

At a glance, it may seem odd that rule r17 triggers
for 14 kernels—and is essential for 10 of these—and yet
only has a hit rate of 4%. The low hit rate is due to
it being a measure of the generated candidates that are
provable invariants, and the particular rule generating
many candidates per kernel.

Unessential rules (r4, r8, r15) are redundant and could
be removed without affecting the precision of GPU-
Verify on our benchmarks: they have been superseded
by more general rules. It is possible that removal of
these rules could change the performance of GPUVerify.
This is because, for a given program, there are typically
many ways to phrase a suitable set of invariants for
verification, and the way the invariants are phrased can
affect the ease or difficulty with which an underlying
solver can process the resulting verification conditions.

4.3.5 Experiment: rule influence
Our final conjecture was that the rules were independent
of each other, having been designed largely in isolation.
To investigate this hypothesis, we observed whether
disabling a rule in GPUVerify affected the hit rate of any
of the other rules. In this case, we say that the disabled
rule influences the rule whose hit rate changed.

Observe that if rule r influences rule s, then the hit
rate of s can only decrease when rx is disabled, be-
cause Houdini returns the unique, maximal conjunction
of candidates forming an inductive invariant. To see
this, consider the example from Section 2.1. The second
invariant, j ≤ 200, is only inductive in conjunction with
the first, j = 2i. Hence, not speculating the first makes
proving the second impossible.

The results of disabling each rule in turn in GPUVerify
are represented by the heat map of Figure 6. For each
pair of rules (r, s) we give the number of kernels where
r influenced s. We see that the matrix is relatively sparse,
with only 43 non-zero entries, which demonstrates that
most rules do not influence each other when applied to
our benchmarks. The major exceptions are rules r7 and
r10, which speculate fundamental facts related to loop
counters; these loop counters are likely to be used to
index into shared arrays.

4.3.6 Experiment: overall increase in precision
An unanswered question is how much more precision is
afforded by the rules as a whole. To answer this, we
launched GPUVerify with all rules disabled and then
with all rules enabled, and we counted the number
of kernels that verified. Disabling all rules, 130 trivial
kernels and 0 non-trivial kernels verified, whereas with
all rules enabled, 129 trivial kernels and 231 non-trivial
kernels verified, a net gain of 230 kernels. The slight drop
in the number of trivial kernels verified is caused by a
timeout: the rules hinder performance. In Section 5 we
turn our attention to this problem.

4.4 Defects detected during the process of deriving
candidate-generation rules
The process of attempting to prove data race- and barrier
divergence-freedom of a large set of kernels led us to
discover that a number of the kernels we considered
were in fact incorrect. We also found two bugs in the
PPCG compiler discussed in Section 4.1. We briefly detail
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color bar at the right of the figure indicates the number of
kernels associated with the colors used in the heatmap.

the defects and our efforts to report the issues in order
for them to be fixed:

• A missing barrier in the SHOC sort top_scan ker-
nel causing a data race. This race was reported and
subsequently fixed.5

• Two threads writing to the same array
location in the CUDA 5.0 convolutionFFT2D
spPostprocess2D kernel. This race was reported
to Nvidia and is fixed in CUDA 7.0.

• A missing barrier in the Rodinia SRAD reduce
kernel between the initialization and use of an array.
We reported this issue, and it has been fixed in
version 3.1 of the suite.6

• Overlapping writes to an array due to an incor-
rectly set kernel parameter in the Rodinia kmeans
kmeans_swap kernel. This issue has also been fixed
in version 3.1 of the suite, in response to our report.

• Two threads writing to the same array location in
the Rodinia leukocyte dilate kernel. This has also
been fixed in version 3.1 of the suite, in response to
our report.

• A similar issue in the Rodinia particle filter
normalize_weights_single kernel, which has
been reported and confirmed, but is not yet fixed.

• A data race due to an incorrectly initialized vector
in the Parboil cutcp benchmark, more specifically in
the opencl_cutoff_potential_lattice ker-
nel, which we have reported, with confirmation
awaiting.

• A data race affecting several tests in the SHOC De-
viceMemory benchmark, which we have reported.7

5. https://github.com/vetter/shoc/issues/30
6. See acknowledgment at https://www.cs.virginia.edu/∼skadron/

wiki/rodinia/index.php/TechnicalDoc
7. https://github.com/vetter/shoc/issues/31
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However, because these tests are performance
micro-benchmarks that use random data, the race
may not be regarded as important.

• Data races in some of the kernels generated by
PPCG due an issue related to PPCG’s use of sched-
ule trees [41] and due to PPCG accidentally ignoring
shared arrays when computing insertion points for
barriers. Both of these issues were reported privately
and subsequently fixed.

5 ACCELERATING INVARIANT GENERATION

As new rules were integrated into GPUVerify, the re-
sponsiveness of the tool diminished. To illustrate this, we
ran a series of experiments over the LOOP set using the
machine setup from Section 4.3.1, all with a per-kernel
timeout of 10 minutes (all reported times are averages
over five runs). During the first experiment we invoked
GPUVerify with user-defined invariants enabled but all
rules disabled. Then, for each subsequent experiment, we
enabled successively more rules according to the order
in which we implemented them. The final experiment
therefore enabled all rules at our disposal. For each
run, we recorded the times consumed by GPUVerify
to process trivial and non-trivial kernels, including any
timeouts. We split the measurements in this fashion to
assess the effect of rule introduction on trivial kernels.

The results appear in Figure 7. The x-axis shows
the evolution of the rules, and the two lines plotted
show the evolution for the trivial and non-trivial kernels,
respectively. This experiment also allowed us to track the
number of kernels GPUVerify was able to verify as the
tool evolved. The results of this are shown in Figure 8.
Again, the x-axis shows the evolution of the rules, and
the two lines distinguish between there trivial and non-
trivial kernels.

Together, Figures 7 and 8 give some insight into
the trade-off between precision and performance when
increasing the candidate-based invariant generation fa-
cilities of a tool. Figure 8 demonstrates the steady im-
provement in the number of kernels that GPUVerify



12

∅
r4
, r

5
r1

2,
r1

3
r1

1,
r1

6 r1 r1
0

r1
4,
r1

5 r8 r7

r2
, r

3 r0 r1
7 r9 r1
8 r6

50

100

150

200

0

231
N

u
m

b
er

of
ve

ri
fie

d
ke

rn
el

s

Trivial

Non-Trivial

Fig. 8. The evolution of GPUVerify’s verification capabili-
ties.

could verify,8 but Figure 7 shows an overall increase in
analysis time. The change in analysis time for the non-
trivial kernels has limited meaning, since the verification
status of these kernels has also changed over time.
However, the verification status for the trivial kernels
should not have changed—since these kernels already
verified without provision of invariants—so the steady
increase in analysis time for these kernels is undesirable.

The most important data points in Figure 7 are those
for rule r18, showing the total run time with all rules
enabled. We see that the introduction of the rules ap-
proximately doubled the time needed to verify the trivial
kernels. The overhead is caused by invariant generation,
which GPUVerify must attempt for every kernel, trivial
or otherwise. For non-trivial kernels, performance was
hit by a modest 1.4× slowdown. Merging the results
reveals that almost two extra hours were needed to
process all kernels in the LOOP set (from 233 minutes
to 346 minutes) once all rules were integrated.

We hypothesized that Houdini was the cause of the
performance reduction. To validate this hypothesis, we
measured the time spent at each GPUVerify stage, i.e.
at each box in Figure 4, during the final experiment
described above. The breakdown of times is as follows:9

• 482 seconds in the frontend (including candidate
generation),

• 7781 seconds in Houdini, and
• 2180 seconds in the verification stage.

As anticipated, Houdini takes up the bulk (74%) of
GPUVerify’s run time. Motivated by this, we next con-
sider techniques that accelerate candidate-based invari-
ant generation.

5.1 Refutation engines

Our idea is to design a number of under-approximations
of programs that are likely to kill candidates quickly.

8. Figure 8 also supports the hypothesis from Section 4.3.4 that rules
r4, r8, and r15 were essential when introduced (although they no longer
are at present).

9. These numbers exclude 17 kernels as they exhausted the timeout.

T (initial program)

S (loop-cut program)

SBASE SSTEP

LU(k) DYN

b under-approximates a
equivalently

a over-approximates b

a

b

Fig. 9. Given an initial program T , Houdini operates on
the loop-cut over-approximation S. We propose four refu-
tation engines: variants of the loop-cut program that only
check base cases (SBASE) and step cases (SSTEP)—
both under-approximating S—and bounded loop unrolling
for depth k (LU(k)) and dynamic analysis (DYN)—both
under-approximating T .

Here, a program T under-approximates a program S if
the correctness of S implies the correctness of T , i.e. T
can fail in the same or fewer ways than S. In this case,
we equivalently say that S over-approximates T .

Houdini employs an over-approximation of the input
program—the loop-cut transformation discussed in Sec-
tion 2.1—to compute an invariant from a set of candi-
dates. Our idea is to design under-approximations of the
loop-cut program that specialize in killing certain types
of candidates. The correctness of our approach rests on
a simple observation: any candidate that is shown to
be unprovable for an under-approximation of the loop-
cut program must also be unprovable for the loop-cut
program itself. We use the term refutation engine to refer
to an analysis that employs an under-approximation.
With enough time, Houdini will eventually uncover
all unprovable candidates, thus a refutation engine is
only useful if it finds unprovable candidates ahead
of Houdini or it allows Houdini to navigate a faster
path through its search space. We have conceived four
refutation engines that we speculated might meet this
specification and which we investigate in the remainder
of this section (see Figure 9 for a summary of the
relationships between the engines).

5.1.1 Splitting loop checking: SBASE and SSTEP
Recall from Section 2.1 that the loop cutting transforma-
tion allows us to establish inductive invariants. As seen
in Figure 1, the invariant must both hold on loop entry
(the base case) and must be maintained by the loop (the
step case). Omitting either of the assertions yields an
under-approximation because the resulting program can
fail in fewer ways than the original. This gives us two
under-approximations of the loop-cut program S: one
that only keeps the base cases (SBASE) and one that
only keeps the step cases (SSTEP). We can also think
of these under-approximations as splitting the program
S into two subprograms (c.f. Figure 10). We speculated
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// base case
assert φ;
havoc modset(B);
assume φ;
if (c) {
B;
// step case omitted
assume false;

}

// base case omitted
havoc modset(B);
assume φ;
if (c) {
B;
// step case
assert φ;
assume false;

}

Fig. 10. Splitting the loop checking for the loop-cut
program S yields two under-approximations, SBASE (left)
and SSTEP (right).

that refuting candidates in each subprogram separately
may be faster than dealing with the program as a whole:
although we might expect the sum of the times taken to
prove the base and step cases separately to be similar to
the time associated with proving them in combination, if
we have a base case (or step case) that does not hold due
to an unprovable candidate invariant, we might be able
to establish this more quickly by considering the base
case (or step case) in isolation, leading to faster refutation
of the offending candidate.

5.1.2 Bounded loop unrolling, LU(k)
Bounded loop unrolling a program for a given depth
k yields a loop-free program where only the first k
iterations of each loop are considered. When applied to
a program T this yields an under-approximation of T .
The method is commonly employed by bounded model
checking tools such as CBMC [42]. Figure 11 shows the
transformation of a loop after unrolling for depth k = 2.
The loop-free fragment models k iterations of the loop.
The resulting program is an under-approximation be-
cause it does not consider behaviors that require further
loop iterations. The assume false statement implies
that any execution that would continue past k iterations
is infeasible and will not be considered [16].

Despite encoding only a subset of the original pro-
gram’s behavior, loop unrolling leads to a syntactically
larger program that, when converted to an SMT formula,
may place a high burden on the underlying SMT solver.
This is especially problematic in the case of nested loops,
where unwinding an outer loop k times creates k copies
of all inner loops, which must then be unwound in turn.
For this reason, in our experiments we consider only the
LU(1) configuration, where loops are unwound up to
depth one. A key difference between SBASE and LU(1)
is that all program loops are abstracted when SBASE is
employed, while LU(1) uses no abstraction. This means
e.g. that if two loops appear in sequence, and the first
loop has an iteration count of at least two, no candidates
of the second loop can be eliminated when LU(1) is
used since every program path that reaches the second
loop involves two or more loop iterations. In contrast,
SBASE considers program paths that abstract the first
loop, reaching the head of the second loop directly.

while (c)
invariant φ {
B;

}

if (c) {
assert φ;
B;
if (c) {
assert φ;
B;
if (c) {
assume false;

}
}

}

Fig. 11. Bounded loop unrolling of the loop on the left for
depth k = 2 yields the loop-free program on the right.

5.1.3 Dynamic analysis, DYN

Executing a program T is a classic under-approximating
analysis which, unlike our other refutation engines, is
not dependent on a SMT solver. Instead, the statements
of T are simply interpreted. To enable execution, we
implemented an interpreter for Boogie—the intermediate
verification language into which GPUVerify translates
kernels and in which it expresses candidate invariants.10

Our dynamic analyzer executes each kernel multiple
times. Before each invocation, values for formal param-
eters and thread and block identifiers (i.e. threadIdx
and blockIdx) are chosen that satisfy the preconditions
of the kernel (c.f. Section 3.2). Re-invocation halts once
a selected coverage criterion—basic block coverage—is
met or a specific number of launches has been reached.
For many kernels we find that a single execution suffices
to achieve full basic block coverage, because GPU code is
rarely control dependent on formal parameters or thread
variables. This means we can simply choose random
values and can ignore sophisticated test-generation tech-
niques, which is clearly not applicable to other domains.
In spite of this simplicity, dynamic analysis may still be
slow, for two reasons.

First, much execution time may be spent in loops
with large bounds without refuting many candidates.
Typically, this is due to dynamic analysis rejecting a
candidate on the first loop iteration, or not at all. Hence,
iterating through loops does not serve our aim of ac-
celerating invariant generation. Our pragmatic solution
is to bound the number of loop iterations summed
across all loops. The downside is that a single loop
may hog the execution, preventing analysis of candidates
in other loops. This drawback is more severe if there
are candidates in loops after the cut-off point that are
easily disproved through dynamic analysis but difficult
to reject through an SMT-based refutation engine.

Second, candidates involving reads from and writes to
arrays should be evaluated for all array indices discov-
ered during the dynamic analysis. For instance, suppose
we have arrays A and B and a candidate asserting that

10. Boogaloo [43] and Symbooglix [44] also support Boogie interpre-
tation, but are generic and do not exploit knowledge specific to GPU
kernels, as we do.
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all accesses into A and into B are distinct. Then, we must
evaluate this candidate with respect to all tuples (a, b),
where a and b are observed array indices of A and B,
respectively. Checking all tuples, however, is generally
not feasible as the number grows exponentially in the
length of the tuple. Instead, we select a constant number
of random tuples, using the rationale that a candidate
is likely true if it holds for this restricted subset. An
obvious disadvantage is that the random selection may
miss an instance that falsifies the property.

A risk associated with employing dynamic analysis
is that the semantics of the dynamic analyzer might
diverge (unintentionally) from the semantics of Boogie.
This could lead to the refutation of candidates that Hou-
dini would in fact be able to prove, or to the failure to
refute candidates that a correct dynamic analysis would
identify as false. While we took care to implement an ac-
curate analysis, we note that this risk cannot compromise
the soundness of verification. In the first case, where
dynamic analysis refutes a provable candidate, the price
may be that verification of the kernel subsequently fails,
due to an insufficiently strong invariant being inferred.
In the latter case, where dynamic analysis fails to refute
a candidate, the candidate is guaranteed to be refuted
eventually by Houdini, so the price is merely that the
performance benefit of using dynamic analysis may not
be realized.

5.2 Evaluation of refutation engines

We conducted several experiments addressing the fol-
lowing questions:

• Is a refutation engine able to reject candidates?
• Do refutation engines complement each other?
• Is invariant generation accelerated by a refutation

engine?
• Does launching multiple refutation engines in par-

allel yield discernible gains?

5.2.1 Experimental setup

For these experiments we were interested in measuring
the performance of GPUVerify using various invariant
generation strategies. As the issue of performance fluc-
tuation across platforms is well-known, we performed
the experiments across two machines running different
operating systems; this to reduce measurement bias [15]:

• a Windows machine with a 2.4GHz 4-core Intel Xeon
E5-2609 processor and 16GB of RAM, running Win-
dows 7 (64 bit) and using CVC4 v1.5-prerelease,
Clang/LLVM v3.6.2, and Common Language Run-
time v4.0.30319; and

• a Ubuntu machine also with a 2.4GHz 4-core Intel
Xeon E5-2609 processor and 16GB of RAM, run-
ning Ubuntu 14.04 and using CVC4 v1.5-prerelease,
Clang/LLVM v3.6.2, and Mono v3.4.0 (this is the
same machine as the one used in the precision
experiments).

The four refutation engines considered were SBASE,
SSTEP, LU(1), and DYN. The dynamic analyzer had the
following settings (c.f. Section 5.1.3), which we obtained
via exploratory manual tuning during development of
the analyzer: it quit as soon as 100% basic block coverage
was met or 5 executions completed; it terminated a single
execution if 1,000 loop iterations were processed; a can-
didate referring to tuple of array indices was evaluated
with respect to 5 distinct, randomly chosen tuples of
observed values (or fewer, if fewer than 5 distinct tuples
had been observed). All these experiments included
our user-defined invariants (the PolyBench/C suite also
included the compiler-generated invariants discussed in
Section 4.1), and used a timeout of 10 minutes. All
reported times are averages over five runs.

5.2.2 Experiment: refutation engine power
The first hypothesis we wished to validate was whether
every refutation engine could reject candidates at least
as fast as Houdini. To this end, we ran each refutation
engine in isolation and measured both the time con-
sumed and the number of candidates refuted. We present
the results in Table 4, showing numbers for Houdini
(denoted by H) for comparative purposes.

The yardstick in this experiment is throughput: the
number of refutations per second. We see that DYN is
extremely effective on Windows, with a throughput that
is four times that of the next-best performing refutation
engine, but much less so on Ubuntu, where the dif-
ference to the next-best performing engine is marginal.
The throughputs of the other refutation engines appear
mostly insensitive to the machine setup; we attribute the
discrepancy in throughput for DYN to differences in the
Common Language Runtime implementation. SBASE
has a high throughput on both machines and is much
more effective than SSTEP, suggesting that it is easier
for the SMT solver to reason about base case candidates.
LU(1) has a moderate throughput, but kills the most
candidates among the refutation engines.

The results indicate that DYN and SBASE show
promise for acceleration of candidate refutation, while
LU(1) has only marginally higher throughput compared
with H. The throughput of SSTEP is poor. Anecdo-
tally, our experience working with SMT-based program
verifiers is that SMT solvers tend to spend more time
reasoning about the step case associated with a loop
compared with the base case. We thus hypothesize that
the SBASE engine achieves high throughput by rapidly
refuting all invariants that can be eliminated via base-
case-only reasoning, avoiding the hard work associated
with the step case. In contrast, SSTEP undertakes the
work that is hard for H—the step case—but unlike H
does not provide throughput by eliminating candidates
that can only be refuted by base case reasoning.

5.2.3 Experiment: complementary power
Our expectation was that refutation engines would each
specialize in killing candidates generated by different
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TABLE 4
Refutation engine performance and throughput.

Windows Ubuntu
Engine Refutations Total time Throughput Refutations Total time Throughput

(sec) (refutations/sec) (sec) (refutations/sec)

H 5,703 17,805 0.32 5,615 15,544 0.36
SBASE 3,692 5,053 0.73 3,692 4,991 0.74
SSTEP 3,421 15,125 0.23 3,430 14,664 0.23
LU(1) 3,712 10,096 0.37 3,754 9,541 0.39
DYN 2,367 811 2.92 2,301 2,828 0.81

TABLE 5
Refutation engine similarity in terms of refuted

candidates; a low Jaccard index indicates that two
engines are complementary in their refutation power

Windows Ubuntu
Refutation engine pair Jaccard index Jaccard Index

DYN SBASE 0.12 0.17
DYN SSTEP 0.23 0.25
DYN LU(1) 0.22 0.25
SBASE SSTEP 0.33 0.39
SBASE LU(1) 0.63 0.70
SSTEP LU(1) 0.49 0.53

rules, and that the refutation engines would therefore
complement each other. To test this, we recorded the
set of candidates rejected by a refutation engine across
the whole LOOP set and then calculated the Jaccard
index [45] between the sets for every pair of refutation
engines. The Jaccard index numerically evaluates the
similarity among sets:

J(A,B) =
|A ∩B|
|A ∪B| .

For non-empty sets A and B, J(A,B) = 1 if the sets are
identical, and J(A,B) = 0 if the sets share no common
elements. The higher the Jaccard index, the more related
the sets are. In our case, when comparing the sets of
candidates killed by two distinct refutation engines, a
low Jaccard index indicates that the two engines are
complementary in their refutation power.

Table 5 gives the Jaccard indices. We observe that DYN
complements every SMT-based refutation engine, espe-
cially SBASE. Given that DYN and SBASE were also the
best performing engines in the throughput experiment,
we hypothesized that these refutation engines together
would be able to accelerate invariant discovery (we
further investigate this hypothesis in the next section).
Finally, the higher Jaccard index for SBASE and LU(1)
suggests that these engines refute similar candidates,
while the lower Jaccard index for SBASE and SSTEP
indicates, as expected, that these engines target different
candidates.

Note that the computed Jaccard indices differ between
our experimental machines because of our use of a time-
out. With enough time, our refutation engines would
compute the same results on both platforms. However,

as our aim is to accelerate invariant generation, the
extent to which a refutation engine can refute candidates
is of limited interest if the time required to do so is
excessive.

5.2.4 Experiment: overall performance impact

A drawback of evaluating a refutation engine in terms of
throughput is that this disregards the difficulty of refut-
ing the remaining unprovable candidates. If a refutation
engine merely quashes easily disproved candidates, then
Houdini must still do the heavy lifting. The experiment
described in this section therefore assesses whether the
proposed refutation engines, or a combination thereof,
actually help Houdini to reach a fixpoint faster.

We compared the time to return an invariant for
a kernel across various refutation engine configura-
tions. Our baseline configuration was Houdini in isola-
tion, which is consistent with the current state of the
art. We set up a number of sequential configurations
whereby Houdini ran after a refutation engine had ter-
minated; these configurations are denoted R;H where
R ∈ {DYN,SBASE,SSTEP,LU(1)}. We also considered
a single parallel configuration whereby DYN and SBASE
were launched alongside Houdini; this configuration is
denoted DYN‖SBASE‖H. We selected DYN and SBASE
for our parallel configuration because of their high
throughputs and complementary nature, as observed in
our previous experiments.

In the parallel configuration, there is a shared pool
of refutations that Houdini reads on each iteration. The
exchange of rejected candidates is therefore asynchronous.
An asynchronous exchange is allowed for two reasons:

1) Houdini guarantees that the number of candidates
decreases in a strictly monotonic fashion [46], and

2) every candidate killed by a refutation engine may
be trusted (because the engine employs an under-
approximating analysis).

Note that the completion time of the parallel configura-
tion is measured as the time for Houdini to terminate;
at that point the refutation engines may still be running,
but an invariant has been computed.

Figures 12 and 13 present the results for the Windows
and Ubuntu machine, respectively. There are two types
of bar charts. The first (Figures 12a and 13a) provides a
bird’s-eye view of performance, showing the total times
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to process all kernels in the LOOP set for each configura-
tion. The second (Figures 12b–12f and 13b–13f) narrows
the focus to a specific configuration, grouping per-kernel
performance comparisons into five intervals: (−∞,−2)
(noteworthy slowdowns), [−2,−1) (modest slowdowns),
[1, 1] (break-evens), (1, 2] (modest speedups), and (2,∞)
(noteworthy speedups). Each of these intervals is di-
vided into two categories depending on whether we
deem invariant refutation for a kernel to be inherently
fast (≤ 2 seconds for the baseline configuration to finish)
or inherently slow (> 2 seconds for the baseline con-
figuration to finish). We split the intervals to be able
to evaluate whether the speedups and slowdowns of
a configuration are actually noticeable to a user. Any
improvement in speed is likely to be more noticeable
when invariant refutation is slow while, conversely,
any performance deterioration is likely more noticeable
when invariant refutation is fast. The threshold of two
seconds is simply based on our experience to date. The
break-evens ([1, 1]) indicate that any change in analysis
time is absorbed by floating-point round-off error. In
most instances these are due to kernels for which anal-
ysis times out with both Houdini and the configuration
under consideration, while some cases are accounted for
by kernels for which the analysis time is very fast, so that
performance differences are likely below the granularity
of the system clock used for time measurements.

We examine the results of the configurations in the
following order: dynamic analysis, the SMT-based refu-
tation engines, and the parallel setup.

Sequential configuration DYN;H
On the Windows machine there was a noticeable boost in
performance using the DYN;H configuration (compared
with the baseline H). The overall run time improved
from 17,806 to 15,283 seconds. The maximum 93.58×
speedup enabled the invariant generation for the kernel
exhibiting this speedup to finish within 6.41 seconds
rather than timing out after 600 seconds.

Slowdowns become severe when a refutation engine
is unable to kill any candidates, in which case sequential
composition always reduces performance. For dynamic
analysis, the magnitude of deceleration is generally
dominated by the time required to interpret the loop
body with the longest execution time. Indeed, the 3.19×
slowdown occurred in the case of a kernel whose loop
body has a large number of statements, taking invariant
generation from 22.21 to 70.77 seconds. This shows that
our heuristics to exit dynamic analysis early are not a
panacea. We believe a more valuable solution would be
to start dynamic analysis only if a coarse estimate of
kernel execution time falls below a certain threshold.
Nevertheless, this configuration offered the most impres-
sive return: only 8 kernels suffer a noteworthy slowdown
(none of which had inherently fast associated invariant
refutation performance in any case), and the majority of
kernels (202) benefited from a performance boost, 42 of
which are noteworthy.

The picture is radically different on the Ubuntu ma-
chine, with a significant maximum slowdown and an
overall loss in performance (16,632 instead of 15,544 sec-
onds). Investigating the kernel for which the maximum
slowdown occurs in more detail, we found that, on the
Windows machine, H and DYN;H completed in 11.31
and 27.04 seconds, while, on the Ubuntu machine, the
configurations completed in 7.49 and 324.33 seconds. The
wide disparity between times cannot be attributed to
variations in execution paths during dynamic analysis,
because the kernel is not control dependent on formal
parameter values or thread identifiers. Moreover, record-
ing the dynamic statement count, we verified that the
interpreter performs the same work on both machines—
the counts matched (110,907 statements). The slowdown
is therefore a consequence of statement execution time,
and ultimately due to the Common Language Runtime
implementation; reaching the same conclusion as in
our throughput experiment. In spite of this handicap,
DYN;H still offered the best speedup, the second most
speedups (184; after the DYN‖SBASE‖H configuration),
and the most noteworthy speedups.

Our observations of dramatically different results be-
tween platforms emphasizes the importance of account-
ing for measurement bias when conducting experimental
studies [15], which we have attempted to do by report-
ing experiments on machines with different operating
systems and runtime implementations.

Sequential configurations {SBASE, SSTEP, LU(1)};H
SBASE;H is the only sequential configuration that
offered an average cross-platform performance boost
(17,428 instead of 17,806 seconds on the Windows ma-
chine, and 15,333 instead of 15,544 seconds on the
Ubuntu machine). This matches our expectations given
the high throughput observed for SBASE in the experi-
ments of Section 5.2.2.

SSTEP;H offered very little, consuming the most time
on both machines, amassing the fewest speedups on
both machines, and creating the worst slowdown on the
Windows machine. Given the low throughput associated
with SSTEP in the experiments of Section 5.2.2, this is
hardly surprising.

LU(1);H is similar to SBASE;H except that the former
resulted in a few extra noteworthy speedups and a better
maximum speedup on both machines, while the latter
resulted in more speedups in total and consumed less
time overall. Given that the throughput of SBASE was
approximately double that of LU(1), these results suggest
that LU(1) kills more valuable candidates, leaving Hou-
dini with less work to do. The work that SBASE under-
takes is still worthwhile (every discovered unprovable
candidate is valuable), but it leaves the more challenging
unprovable candidates to Houdini.

Finally, we note that all of the SMT-based configura-
tions negatively impacted the majority of fast kernels
on both the Windows and Ubuntu machine. Hence,
these refutation engines should only be enabled when
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Fig. 12. Overall performance impact on the Windows machine, organized by noteworthy slowdowns, (−∞,−2);
modest slowdowns, [−2,−1); break-evens, [1, 1]; modest speedups, (1, 2]; and noteworthy speedups, (2,∞).
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Fig. 13. Overall performance impact on the Ubuntu machine, organized by noteworthy slowdowns, (−∞,−2); modest
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GPUVerify is likely to struggle with a kernel and its
candidates.

Parallel configuration DYN‖SBASE‖H
In comparison with the other configurations, there was
a marked improvement in average performance for the
DYN‖SBASE‖H configuration, with a 1.27× speedup
on the Windows machine and a 1.11× speedup on the
Ubuntu machine. This met our expectation that exe-
cution of Houdini in parallel with the most powerful
refutation engines is superior to Houdini in isolation.

Some of the other results, however, appear counter-
intuitive. We might expect parallelization to completely
eliminate the possibility of multiple strategies slowing
down invariant generation: modulo experimental error
and the modest overheads of parallelism, it might seem
that the performance of regular Houdini should be an
upper bound on parallel performance. However, we
find that worst-case slowdowns are reduced (from 3.19×
to 3.15× on Windows, and from 43.31× to 3.17× on
Linux), but not eliminated. The reason is that Houdini is
not impervious to the other refutation engines: how the
fixpoint is reached is influenced by the order in which
refutations are discovered, and alternate orderings create
variations in processing time.

6 RELATED WORK

In the same vein as the GPUVerify project, several other
methods for testing and verifying properties of GPU
kernels have been proposed. These include approaches
based on dynamic analysis [47], [48], [49], verification via
SMT solving [50], [51], [52], symbolic execution [53], [54]
and program logic [55], [56]. Among these approaches,
GPUVerify is the only technique that uses candidate-
based invariant generation as part of its analysis method.

Invariant generation has been a long-standing chal-
lenge in computer science that has received a lot of
attention from researchers, e.g. [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12] (by no means an exhaustive list).
We discuss the work most closely related to our study.

6.1 Candidate-based invariant generation
Houdini was proposed as an annotation assistant for the
ESC/Java tool [5], and is formally presented in [13]. The
method is analogous to an invariant strengthening tech-
nique for circuit equivalence checking [6]; we believe the
methods were discovered independently. Houdini can be
viewed as a special instance of predicate abstraction [57],
restricted to conjunctions of predicates. This restriction
is what makes the runtime of Houdini predictable, in-
volving a worst case number of solver calls proportional
to the number of candidates. The restriction also makes
it impossible to synthesize disjunctive invariants over
predicates using Houdini. A recent compelling appli-
cation of Houdini is in the Corral reachability checker,
where Houdini is used to generate procedure summaries
which in turn are used to guide the search for bugs [58].

6.2 Abstract interpretation

Abstract interpretation [4] is a general program anal-
ysis framework that can be parameterized to generate
inductive invariants over a given abstract domain. For
instance, the Interproc analyzer synthesizes invariants
over the abstract domain of linear inequalities, using
the Apron library [7]. Predicate abstraction is abstract
interpretation over the domain of Boolean combinations
of predicates [59], and Houdini is thus a form of ab-
stract interpretation where the domain is restricted to
conjunctions of predicates. The main disadvantages of
abstract interpretation are that it is inflexible, in the
sense that generation of invariants beyond a given ab-
stract domain requires a bespoke new domain to be
crafted, and that to ensure convergence to a fixpoint
it is necessary to apply widening which can be hard to
control in a predictable manner. In contrast, a Houdini-
based approach can easily be “tweaked” by adding new
candidate generation rules on an example-driven basis,
as we have demonstrated in this paper. Convergence
to a fixpoint is also predictable based on the known
set of candidates. In recent work, Abstract Houdini has
been proposed in an attempt to combine the benefits
of abstract interpretation and candidate-based invariant
generation [8].

6.3 Invariant generation for affine programs

There has been significant progress recently on invariant
generation for a restricted class of programs that operate
on unbounded integers and only compute affine expres-
sions over program variables. Under these restrictions,
novel applications of Craig interpolation [9], abduc-
tion [10] and abstract acceleration [11] have been shown
to be effective in invariant synthesis. The weakness of
these methods are the restrictions on input programs. In
our application domain, for example, programs operate
on fixed-width bit-vectors and floating point numbers.
It is necessary to reason precisely about bit-vectors to
capture arithmetic using powers-of-two, frequently en-
coded efficiently using shifting and masking, and we
require support for uninterpreted functions to abstract
floating point operators but retain their functional prop-
erties. Furthermore, GPU kernels frequently exhibit non-
linear computations. For example, reduction operations
involve loops in which a counter exponentially varies
in powers of two between an upper and lower bound.
These characteristics render methods for affine programs
inapplicable in our setting.

6.4 Dynamic invariant generation

The techniques discussed above all use static analysis to
establish program invariants with certainty. In contrast,
dynamic invariant generation, pioneered by the Daikon
system [12] employs dynamic analysis with respect to
a test suite to speculate likely invariants: facts that are
found to hold invariantly during testing, with statistical
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evidence that the dynamic invariance of these facts
appears to be non-coincidental. This method provides
no guarantee that the suggested facts are actually in-
variants. A study combining the Daikon method with
extended static checking for Java considered the use of
dynamically generated invariants as a source of candi-
dates for Houdini [60].

6.5 Studies on invariant generation

A related study on invariant generation [61] aimed to
evaluate whether it is better to rely on manual ef-
fort, automated techniques or a combination of both
in generating program invariants. The study concludes
that a combination is required: Daikon inferred 5 times
as many invariants as specified manually, but could
only find approximately 60% of the manually crafted
invariants. The benchmark set consisted of 25 classes
taken partially from widely used libraries and partially
written by students. The size of the benchmark set
allowed the authors to investigate each inferred assertion
individually; this is not feasible in our study due to the
substantially larger number of benchmarks.

7 CONCLUSIONS

In this study we have shown that candidate-based in-
variant generation is valuable to GPUVerify, significantly
increasing the precision of the tool and, to some extent,
relieving the burden of manual loop-invariant discovery.
This success is in large part due to our strategy of incor-
porating new rules into GPUVerify because candidate-
based invariant generation is only as good as the supply
of speculated candidates. However, our evaluation also
provides a cautionary tale: rules may become redundant
over time, particularly when new rules are introduced,
thus a continual assessment of their use in the verifica-
tion tool is worthwhile.

The wider issue with candidate-based invariant gen-
eration is that, in general, more rules mean more candi-
dates and, ultimately, more processing time. The refuta-
tion engines and the infrastructure that we implemented
to curb processing time proved effective when compar-
ing invariant discovery with and without these tech-
niques. Our mechanism to choose between refutation
engines and between sequential or parallel processing
mainly rested on empirical evidence of throughput and
complementary power. The drawback of this, as the
results indicate, is that the unselected refutation engines
or processing modes could be better for specific kernels.
As is, our setup ignores all properties of the program and
of the candidate invariants. Future work may therefore
investigate machine learning techniques to fine-tune the
setup. Another avenue for future work is to investigate
additional parallel refutation strategies, in addition to
the strategy that we predicted to be the most promising.
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T. King, A. Reynolds, and C. Tinelli, “CVC4,” in CAV, 2011, pp.
171–177.

[26] AMD, “Accelerated Parallel Processing SDK,” accessed 2014, http:
//developer.amd.com/sdks/amdappsdk.



21

[27] NVIDIA, “GPU Computing SDK,” accessed 2014,
https://developer.nvidia.com/gpu-computing-sdk.

[28] Microsoft Corporation, “C++ AMP sample projects
for download (MSDN blog),” accessed 2014, http:
//blogs.msdn.com/b/nativeconcurrency/archive/2012/01/
30/c-amp-sample-projects-for-download.aspx.

[29] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in ISPASS, 2009, pp. 163–174.

[30] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput com-
puting,” UIUC, Tech. Rep. IMPACT-12-01, 2012.

[31] S. Che, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:
A benchmark suite for heterogeneous computing,” in Workload
Characterization, 2009, pp. 44–54.

[32] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable hetero-
geneous computing (SHOC) benchmark suite,” in GPGPU, 2010,
pp. 63–74.

[33] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado,
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APPENDIX A
INVARIANT GENERATION RULES IN GPUVERIFY

The invariant generation rules broadly fall into the fol-
lowing categories:

• Patterns over accesses. These summarize reads and
writes that are issued when executing a loop. Exam-
ples include strides or ranges of accesses and can
include one, two, or three-dimensional patterns.

• Patterns over loop guards. These summarize ranges
and values that variables used in loop guards may
assume.

• Variables that are always powers of two. These are
useful in kernels that perform tree reductions or
prefix sums [62], where the variable is used as an
offset for issuing reads and writes and to disable
threads that no longer take part in a calculation.
Sometimes it is necessary to discover relationships
between pairs of power-of-two variables, e.g. one
power-of-two variable doubling on every loop iter-
ation, and another halving on every loop iteration,
so that their product is invariant.

• No accesses can be in-flight at loop heads. These
make judgments concerning reads or writes issued
during the execution of a loop.

• Uniformity of variables across threads. These are
needed to verify absence of barrier divergence. They
establish that threads follow the same flow of con-
trol, or that variables have the same value at a loop
head.

We now give a brief description of each rule, in some
cases presenting a motivating kernel fragment. In the
following, write(out) denotes the set of writes that have
been issued to array out and that may still be in-
flight; read(out) is similar. In addition, C denotes a
constant value and e an expression. Several of the rules
refer to threads being enabled and disabled. The notion
of enabledness is part of the predicated semantics that
GPUVerify uses when translating a GPU kernel into
Boogie [20], [19].

A.1 r0. accessBreak
Given an access pattern involving thread components
(thread or block identifiers), this rule attempts to break
the access pattern into its component forms using rewrit-
ing. The rule is based on the intuition that relating an
access pattern of a thread to its components is useful
because each thread must always have at least one
component that is unique to that thread when compared
to another thread.

A.2 r1. accessedOffsetsSatisfyPredicates
This rule identifies stride patterns and strength reduction
loops. For the loop

for (int i = 0; i < 4; i++) {
out[i*blockDim.x+threadIdx.x] = ...

}

the rule generates:

∀w ∈ write(out).

(w % blockDim.x) = threadIdx.x .

A.3 r2. accessLowerBoundBlock and r3. accessUp-
perBoundBlock
These rules identify whether a block of threads is as-
signed a contiguous range of an array. The candidates
generated are lower and upper bounds that restrict the
range of accesses. For the loop
for (int i = 0; i < 4; i++) {

out[C*blockDim.x+i] = ...
}

the rules generate:

∀w ∈ write(out). C · blockIdx.x ≤ w
and

∀w ∈ write(out). w < C · (blockIdx.x+ 1) ≤ w .

A.4 r4. accessOnlyIfEnabledInEnclosingScopes
The rule specifies that accesses can only have been issued
when a thread is enabled in all enclosing scopes. For
if (x < k) {

if (y < l) {
for (...) {

out[...] = ...;
}

}
}

the rule generates:

write(out) 6= ∅ ⇒ x < k ∧ y < l .

A.5 r5. conditionsImplyingEnabledness
This rule specifies that a thread is only enabled when it
is enabled in all enclosing scopes.

A.6 r6. disabledMaintainsInstrumentation
This rule specifies that if a thread is disabled during the
execution of a region of code, then the accesses that are
being tracked for the thread cannot change as a result of
the execution of this region.

A.7 r7. guardMinusInitialIsUniform
This rule specifies that loops containing barriers must
have uniform conditions, meaning that the loop condition
evaluates to the same value across all threads. This is
necessary to avoid barrier divergence. A common case
that makes this non-trivial to prove is where the loop
counter is initialized to a non-uniform value, typically
a thread identifier, and is thereafter incremented by a
uniform value, often a thread block dimension. In this
case, knowing that the loop counter minus its initial
value is uniform may suffice to prove that the Boolean
value of the loop guard is uniform. For the loop
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for (int i = threadIdx.x;
i < N; i += blockDim.x) {

__syncthreads();
}

the rule generates:

uniform(i− threadIdx.x) ,
which specifies that the expression i−threadIdx.x is
uniform.

A.8 r8. guardNonNeg
This rule specifies that every guard variable is non-
negative. For the loop

for (int i = C; i > 0; i--) {
...

}

the rule generates 0 ≤ i.

A.9 r9. loopBound
This rule specifies that the initial value of a guard
variable bounds the range of the guard. For the loop

for (int i = e; ...) {
...

}

the rule generates e ≤ i and i ≤ e.

A.10 r10. loopCounterIsStrided
This rule is analogous to accessedOffsetsSatisfyPredi-
cates but for guard variables.

A.11 r11. loopPredicateEquality
This rule is concerned with barrier divergence and uni-
formity of control flow, and is intimately related to the
predicated execution semantics that GPUVerify employs
when translating a kernel into Boogie form.

A.12 r12. noread and r13. nowrite
These rules identify that no accesses can be in-flight at
the loop head when a barrier appears in the loop. For

for (...) {
__syncthreads();

}

the rules generate:

read(out) = ∅
and

write(out) = ∅ .

A.13 r14. pow2 and r15. pow2NotZero
These rules identify variables that only assume power-
of-two values. The rule is based on the intuition that
power-of-two values are often used in bit masks, tree
reductions, and prefix sums [62]. For the loop

for (int x = N; x > 0; x >>= 1) {
...

}

the rule pow2 will generate

x = 0 ∨ x = 1 ∨ · · · ∨ x = 231 ,

while pow2NotZero will generate the same disjunction
but excluding the x = 0 case.

A.14 r16. predicatedEquality
This rule is concerned with barrier divergence and uni-
formity of variables, and is intimately related to the
predicated execution semantics that GPUVerify employs
when translating a kernel into Boogie form.

A.15 r17. relationalPow2
This rule identifies possible pairs of power-of-two vari-
ables where one is being incremented and the other
is being decremented. It specifies a lock-step relation
between the variables.

A.16 r18. sameWarpNoaccess
This rule concerns threads that are in the same warp—a
unit of typically 32 threads that, on NVIDIA architec-
tures, execute in lock step. GPUVerify provides optional
support for warps [40]. If this support is enabled, the rule
speculates that if the two threads under consideration
are in the same warp, then neither thread has any pend-
ing in-flight accesses (lock-step execution guarantees that
the threads synchronize with one another after each
instruction).


