
Imperial College London
Department of Computing

Scalable Verification Techniques
for Data-Parallel Programs

Nathan Yong Seng Chong

September 2014

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Declaration

This thesis and the work it presents are my own except where otherwise acknowledged.

Nathan Yong Seng Chong

The copyright of this thesis rests with the author and is made available under a Creative
Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to
copy, distribute or transmit the thesis on the condition that they attribute it, that they
do not use it for commercial purposes and that they do not alter, transform or build upon
it. For any reuse or redistribution, researchers must make clear to others the licence terms
of this work.

2

Abstract

This thesis is about scalable formal verification techniques for software. A verification
technique is scalable if it is able to scale to reasoning about real (rather than synthetic or
toy) programs. Scalable verification techniques are essential for practical program verifiers.
In this work, we consider three key characteristics of scalability: precision, performance
and automation. We explore trade-offs between these factors by developing verification
techniques in the context of data-parallel programs, as exemplified by graphics processing
unit (GPU) programs (called kernels). This thesis makes three original contributions to
the field of program verification:

• An empirical study of candidate-based invariant generation that explores the trade-
offs between precision and performance. An invariant is a property that captures
program behaviours by expressing a fact that always holds at a particular program
point. The generation of invariants is critical for automatic and precise verification.
Over a benchmark suite comprising 356 GPU kernels, we find that candidate-based
invariant generation allows precise reasoning for 256 (72%) kernels.

• Barrier invariants: a new abstraction for precise and scalable reasoning about data-
dependent GPU kernels, an important class of kernel beyond the scope of existing
techniques. Our evaluation shows that barrier invariants enable us to capture a
functional specification for three distinct prefix sum implementations for problem
sizes using hundreds of threads and race-freedom for a real-world stream compaction
example.

• The interval of summations: a new abstraction for precise and scalable reasoning for
parallel prefix sums, an important data-parallel primitive. We give theoretical results
showing that the interval of summations is, surprisingly, both sound and complete.
That is, all correct prefix sums can be precisely captured by this abstraction. Our
evaluation shows that the interval of summations allow us to automatically prove
full functional correctness of four distinct prefix sum implementations for all power-
of-two problem sizes up to 220.

3

Acknowledgements

Alastair F. Donaldson, my supervisor, has been instrumental to my work and I thank
him unreservedly. Ally’s insights and encouragement were the driving force behind all of
my best research. I remember weeks of bringing obtuse little diagrams to Ally’s office
where we would drink coffee and try our best to decipher just a few lines of code; it was a
wonderful time! Just as importantly, I have always felt that Ally was ‘in my corner’ and
he has spent many hours reading this thesis, helping me to improve it. Thank you Ally, I
could not imagine completing this work without your support.

Paul H. J. Kelly, my second supervisor, has been a guide and friend to me since my MSc
and he has advised me soundly and sagely. It was Paul’s off-the-cuff observation about
the sequence 0, 1, 1, 2, 1, 2, 2, 3, . . . — “that’s the Hamming weight” — scribbled in my
notebook that provided the key to unravelling the Blelloch prefix sum given in Chapter 4.
I thank Jeroen Ketema, my co-author, colleague and friend, who showed me how rigor
and insight go hand-in-hand, and with whom I proudly share (with Ally) the discovery of
the interval of summations. I thank Samin Ishtiaq, my long-time mentor, who taught me
how to be a researcher and whose time, expertise and friendship I appreciate very much.

I thank Adam Betts and Paul Thomson, the other ‘founding’ members of the Multicore
Programming Group, for being good friends; and, of course, the later members too: Ethel
Bardsley, Pantazis Deligiannis, Daniel Liew and John Wickerson. I also thank Emre Özer,
Alastair Reid and Per Strid, my former colleagues at ARM, for their time and advice;
Emma Armitage for her tireless efforts to teach me good design; Derek Graham, Kim
Jarvis, Nick Johnson, Tom Riley and Rob Yates for all the fun times; Julie Angel, Ido
Portal, Christopher Sommer, Vic Verdier and Stephane Vigroux for inspiring me; and, not
least, Julian Donovan and my friends in the G— Gym who I am proud to move with.

I gratefully acknowledge financial support from the EU FP7 STREP project CARP
(project number 287767) and the EPSRC PSL project (EP/I006761/1).

I thank my parents who gave me everything including my sister and brother, Rachael
and Daniel, and all my family around the world who I love (and also thank!). This is for
you. I also thank Sukong for his steadfast belief in me. Finally, I thank Phương-Dzung
for her constant love and support and for being my Springtime.

4

Contents

1. Introduction 11
1.1. Motivation . 11
1.2. Contributions . 12
1.3. Publications . 13
1.4. Formal Acknowledgements . 13

2. Race Checking for GPU Kernels 15
2.1. A Brief Review . 15

2.1.1. Program Verification . 15
2.1.2. The Challenge of Concurrency . 17
2.1.3. Data-Parallel Programs . 18
2.1.4. Data Races and Barrier Divergence in GPU Kernels 23

2.2. Race Checking Techniques for GPU Kernels 25
2.2.1. Dynamic Instrumentation . 26
2.2.2. Dynamic Symbolic Execution . 26
2.2.3. Hybrid Techniques . 27
2.2.4. Static Verification . 28

2.3. Kernel Transformation . 31
2.3.1. Predication . 31
2.3.2. Two-Thread Reduction with Shared State Abstraction 32
2.3.3. Race Instrumentation . 34
2.3.4. Kernel Transformation Summary and Example 37
2.3.5. Further Considerations . 39

2.4. Summary . 43

3. Scaling Up Candidate-Based Invariant Generation 45
3.1. Preliminaries . 45

3.1.1. Loop Invariants . 46
3.1.2. Candidate-Based Invariant Generation using Houdini 48

5

3.1.3. Invariant Generation in GPUVerify 50
3.2. Benchmarks . 50
3.3. Candidate Generation Rules for GPU Kernels 52

3.3.1. Invariants for Handling Race Instrumentation 52
3.3.2. Example Invariants for Access Patterns 54
3.3.3. Invariants for Handling Uniformity 58
3.3.4. Methodology . 60
3.3.5. Rules . 61

3.4. Evolution of Precision and Performance . 66
3.5. Accelerating Houdini using Under-Approximation 68

3.5.1. Exploiting Under-Approximation . 68
3.5.2. Parallel Refutation Sharing . 71

3.6. Experimental Evaluation . 71
3.6.1. Potential for Precision and Performance Improvement 72
3.6.2. Evaluating Precision . 73
3.6.3. Evaluating Refutation Engine Performance 76

3.7. Related Work . 80
3.8. Summary . 83

4. Barrier Invariants: Precise Reasoning for Data-Dependent Kernels 84
4.1. The Need for Barrier Invariants . 85
4.2. Stream Compaction Example . 89
4.3. The Two-Thread Reduction with Barrier Invariants 93

4.3.1. Syntax . 93
4.3.2. Semantics . 94
4.3.3. Soundness . 103
4.3.4. Verification Method . 106
4.3.5. Relation to Equality Abstraction . 110

4.4. Barrier Invariants for Stream Compaction 111
4.4.1. Blelloch Prescan . 113
4.4.2. Brent-Kung Scan . 118
4.4.3. Kogge-Stone Scan . 121

4.5. Experimental Evaluation . 123
4.5.1. Modular Verification of Stream Compaction 124
4.5.2. Staged Verification of Blelloch and Brent-Kung 124
4.5.3. Staged Verification of Kogge-Stone 127

6

4.6. Related Work . 127
4.7. Summary . 129

5. The Interval of Summations: Functional Correctness for Prefix Sums 130
5.1. Prefix Sums and Their Applications . 131
5.2. Sequential Setting . 135

5.2.1. Syntax . 135
5.2.2. Typing . 136
5.2.3. Semantics . 137
5.2.4. The Interval of Summations . 143
5.2.5. Soundness and Completeness . 145

5.3. Data-Parallel Setting . 149
5.3.1. Syntax, Typing and Semantics . 149
5.3.2. Soundness and Completeness . 152
5.3.3. Data Race-Freedom . 155

5.4. Verification Method . 157
5.5. Experimental Evaluation . 159

5.5.1. Verification of Data Race-Freedom 162
5.5.2. Dynamic Analysis . 162

5.6. Related Work . 163
5.7. Summary . 166

6. Conclusions and Open Problems 167
6.1. Contributions . 167
6.2. Limitations . 169
6.3. Future Work . 170
6.4. Summary . 173

Bibliography 173

A. Permissions 188

7

List of Tables

2.1. Equivalent terminology for CUDA and OpenCL 22
2.2. Race instrumentation encodings . 38
2.3. Kernel transformation for structured programs 40

3.1. Number of loops of the kernels in our study 52
3.2. Loop nest depth of the kernels in our study 52
3.3. Per-rule statistics of number of candidates, refutations and invariants 75
3.4. Per-kernel statistics of number of candidates, refutations and invariants . . 76
3.5. Refutation engine performance and throughput 78
3.6. Speedups from using refutation engines sequentially and in parallel 80

4.1. Brent-Kung downsweep thread assignment of elements for n = 8 121
4.2. Modular verification of the stream compaction kernel 124

5.1. Prefix sum applications . 131
5.2. Data race-freedom checking results . 162
5.3. Number of test cases required for Voigtländer method 163
5.4. Interval of summations and Voigtländer verification results 164
5.5. Asymptotic behaviour of the interval of summations 165

8

List of Figures

2.1. A two-dimensional CUDA grid . 20
2.2. A CUDA stencil application . 21
2.3. OpenCL version of the stencil kernel in Figure 2.2 23
2.4. OpenCL version of the stencil host code in Figure 2.2 24
2.5. Examples of barrier divergence . 25
2.6. A counterexample showing the necessity of shared state abstraction 33
2.7. A simple OpenCL kernel containing a data race 39
2.8. Kernel transformation of the kernel in Figure 2.7 41

3.1. Two loops requiring loop invariants . 46
3.2. The loop-cutting transformation . 47
3.3. An example program and Houdini run . 48
3.4. Invariant generation in GPUVerify . 50
3.5. A racy kernel and its translation using race instrumentation 53
3.6. Saxpy kernel using slicing . 55
3.7. Saxpy kernel using striding . 56
3.8. Matrix transpose kernel . 57
3.9. Predication and uniformity analysis example 58
3.10. The evolution of precision and performance of GPUVerify 67
3.11. Under-approximating engines . 69
3.12. Loop unrolling example . 70
3.13. Splitting loop checking . 70
3.14. Heatmap of candidate generation rule influence 77
3.15. Venn diagram of complementary and redundant refutations 79

4.1. Adversarial and Equality examples . 86
4.2. Data-parallel primitives . 88
4.3. Stream compaction . 90
4.4. OpenCL stream compaction kernel . 91

9

4.5. Blelloch prescan example using n = 8 elements 92
4.6. Syntax for a kernel programming language with barrier invariants 94
4.7. Rules for predicated thread execution of basic statements 96
4.8. Rules for concrete lock-step semantics . 98
4.9. Rules for abstract two-threaded semantics 102
4.10. Equality and Known-Equality examples . 111
4.11. Tree structure of the Blelloch algorithm for n = 8 113
4.12. Upsweep and downsweep equalities for n = 8 114
4.13. Tree structure of the Blelloch downsweep for n = 8 116
4.14. Brent-Kung prefix sum kernel and circuit diagram for n = 8 119
4.15. Kogge-Stone prefix sum kernel and circuit diagram for n = 8 122
4.16. Verification results for (a) Blelloch and (b) Brent-Kung prefix sums 126
4.17. Verification results for Kogge-Stone prefix sum 127

5.1. 4-bit ripple-carry and carry-lookahead adders 133
5.2. Syntax for a simple sequential imperative language 135
5.3. Typing rules for expressions and statements 136
5.4. Operational semantics of our sequential programming language 139
5.5. Monoid substitution rules . 142
5.6. Syntax for a simple data-parallel language 150
5.7. Operational semantics of our kernel programming language 151
5.8. Extended monoid substitution rules . 152
5.9. An OpenCL kernel that fools the interval of summations 160
5.10. Circuit representations of the prefix sum algorithms for n = 8 elements . . . 161

10

1. Introduction

This thesis is about techniques for building better software. In particular, verification
techniques, which can give guarantees of program correctness beyond the guarantees that
can be provided by testing. To enable practical verification tools we require scalable
verification techniques that are capable of reasoning about real programs. This thesis
examines the problem of scalable verification techniques in the context of data-parallel
programs.

1.1. Motivation

Software is the intangible fabric that enables modern life. Or, as Marc Andreessen wrote,
“software is eating the world” [And11]. The central argument of his now famous essay
is that software is disrupting, revolutionising and sometimes replacing (or, eating) entire
industries: communications, retail, entertainment, finance, transportation, infrastructure
and much more; software governs it all.

Yet all non-trivial programs inevitably contains bugs or unintended defects since pro-
gramming is part science and art [Knu74], involving both logic and intuition. As program-
mers will attest: it is surprisingly difficult to tell a computer what you mean. The density
of bugs in industry delivered code has been estimated to be between one and twenty-five
errors per thousand lines of code [McC04, p. 521]. Rephrasing a syllogism of DeMillo,
Lipton and Perlis [DLP79]:

All human artifacts of sufficient size and complexity are imperfect.

All real-life programs are sizeable and complex human artifacts.

Hence all real-life programs are imperfect.

The combination of these two observations (that software is both pervasive and in-
evitably prone to errors) means that the consequences of bugs can be catastrophic. Promi-
nent cases include the Therac-25 radiation therapy machine [Lev93], the European Space
Agency’s Ariane-5 rocket [Dow97], and the high-frequency trading firm, Knight Capital
Group [U.S13], where software bugs can be held accountable, respectively, for fatalities,

11

the destruction of a 370 million dollar rocket (in 37 seconds), and near-bankruptcy caused
by the loss of 440 million dollars (in 46 minutes). More prosaically, a 2002 report by U.S.
Department of Commerce estimates the cost of faulty software to “range in the tens of
billions of dollars per year” [Res02].

Good software engineering practice uses many techniques, tools and processes to de-
fend against bugs in software. These include coding standards, code reviews, defensive
programming and testing (McConnell [McC04] covers each of these techniques). Testing
has many different guises (such as unit, integration and regression testing) but funda-
mentally takes the form of running test cases over the program and checking the output
or behaviour against an expected outcome. Testing is very widely used and very effec-
tive [McC04]. However, it is an unending task because testing can never give guarantees of
correctness since exploring the space of test cases, even for modest programs, is infeasible.

In this thesis we focus on program verification, which allows us to prove programs correct
with respect to some specification. It is important to emphasise that program verification
is not “a silver bullet” [Bro87]: verified programs are not perfect. Nevertheless, program
verification can give guarantees of correctness that cannot be given by testing.

Program verification is not new technology: it is as old as the discipline of software
engineering itself [Mac01, pp. 34–55]. However, verification is rarely used in industry ex-
cept in safety-critical applications [BH05]. The vision of program verification as given by
Hoare [Hoa03] — “a software industry that embraces verification and verification technol-
ogy throughout the software life-cycle”— is not a reality for everyday programmers. How
can we address this?

1.2. Contributions

Practical program verifiers require underlying scalable verification techniques. In this
work, we regard a verification technique to be scalable if it is able to scale to reasoning
about real (rather than synthetic or toy) programs. We regard a program to be real if it
is found ‘in the wild’ and therefore reflects the idioms and language features employed by
real programmers. In contrast, a synthetic program is found ‘in captivity’. It was designed
for an explicit purpose such as performance or verification (usually to show that a given
technique is better than another) and consequently may or may not reflect the features
found in real programs. This does not mean that synthetic programs are useless (we will
use them many times in this thesis to illustrate our techniques), but rather that synthetic
programs are not necessarily accurate reflections of typical programs. Real programs using
realistic problem sizes are the ultimate test for program verifiers.

12

In this thesis we regard the performance of the verifier when analysing real programs
against increasingly large problem sizes to be the critical measure of scalability. Other key
characteristics that we consider are precision (how accurate the verifier is at discerning
bugs) and automation (the degree of programmer assistance required to use the verifier).
There are important trade-offs to be made between each of these characteristics.

We will investigate scalable verification techniques in the context of data-parallel pro-
grams. This class of parallel program has seen renewed interest with the rise of general-
purpose graphic processing unit (GPU) computing. This has seen GPUs become common-
place as accelerators for many diverse applications across many different platforms from
high-performance supercomputers to embedded devices.

After reviewing the background of our work in Chapter 2, we turn to the three main
contributions of this thesis:

• Chapter 3 explores the trade-offs between automation and performance. We conduct
an empirical study of invariant generation, which is critical for automatic verification,
and performance, the responsiveness of the verifier.

• Chapter 4 develops barrier invariants, a new abstraction and verification technique
that enables precise and scalable reasoning for a class of program previously beyond
the scope of existing techniques.

• Chapter 5 develops an automatic, precise and highly-scalable verification technique
using a new abstraction, the interval of summations, for reasoning about prefix sums,
an important primitive for data-parallel programs.

1.3. Publications

Some of the original material in this thesis has been previously published by the author in
two co-authored papers. The barrier invariant technique presented in Chapter 4 appears
in [CDK+13]. The interval of summations technique presented in Chapter 5 appears in
[CDK14]. We refer to two further co-authored papers [BCD+12, BBC+14] as prior work
because they represent the context in which the original work in this thesis was conducted.

1.4. Formal Acknowledgements

My declaration of originality states that “this thesis and the work it presents are my own
except where otherwise acknowledged.” I list the most important exceptions here.

13

I gratefully acknowledge and thank my main co-authors, Alastair F. Donaldson and
Jeroen Ketema, for their significant contributions to [CDK+13] and [CDK14] (which form
the basis of Chapters 4 and 5 respectively). In particular, they were both instrumental in
the formalisation of barrier invariants including its soundness result; recognising the utility
of the interval of summations as a single dynamic test case; and, the formalisation of the
interval of summations including its theoretical results. I also gratefully acknowledge and
thank the following individuals.

• Adam Betts for (i) implementing the dynamic analysis refutation engine discussed
in Chapter 3 and (ii) helping to conduct the performance experiments of Chapter 3.

• Pantazis Deligiannis for implementing the bounded loop unrolling refutation engine,
splitting loop checking refutation engines and parallel refutation sharing discussed
in Chapter 3.

• Alastair F. Donaldson for conducting the data race-freedom experiments of Chap-
ter 5.

• Jeroen Ketema for helping to conduct the evolution and precision experiments of
Chapter 3.

• Ethel Bardsley and John Wickerson for implementing KernelInterceptor [BDW14]
used in the methodology of Chapter 3.

Finally, I acknowledge and thank the contributors to GPUVerify who I have not listed
above: Peter Collingbourne, Egor Kyshtymov, Daniel Liew, Paul Thomson and Shaz
Qadeer.

14

2. Race Checking for GPU Kernels

In this chapter we review techniques for checking or verifying that data-parallel programs
are race-free. Our main aim is to give a detailed introduction to the verification method
of the GPUVerify tool [BCD+12], discussed in Sections 2.2.4 and 2.3, since it is the basis
of this thesis.

2.1. A Brief Review

To begin we briefly review program verification, the challenge of concurrency and data-
parallel programs.

2.1.1. Program Verification

The aim of program verification is to prove that programs are correct with respect to
some logical specification. Just as a mathematical conjecture cannot be proven by testing
(modulo exhaustive testing) neither can a program. We need logic for rigorous reasoning.
The foundations of program verification were laid by Floyd, Hoare and Dijkstra. Floyd-
Hoare logic is a logical framework for reasoning about the correctness of programs [Flo67,
Hoa69] in which programs are specified by Hoare triples, {ϕ} P {ψ}. We interpret this
judgement to mean that all executions of the program P that start in a state satisfying the
precondition ϕ either (i) terminate in a state satisfying the postcondition ψ or (ii) do not
terminate. Because we do not constrain the behaviour of non-terminating executions we
call this partial correctness (in contrast to total correctness which requires termination).
In this thesis we use correctness in the sense of partial correctness and therefore avoid
having to prove termination. A program proof is a program annotated with Hoare triple
annotations and can be checked for correctness. We distinguish between safety properties
(something bad never happens) and liveness (something good always eventually happens).

Floyd-Hoare logic gives a method for checking a program proof but it does not in it-
self give a method for generating such a proof. Dijkstra showed how to mechanise the
generation of such a proof using predicate transformers [Dij76], which can translate a pro-
gram into a verification condition: a logical formula whose validity implies the correctness

15

of the program. Subsequently, a verification condition can be discharged to a theorem
prover. Using an automated theorem prover such as a Satisfiability Modulo Theories
(SMT) solver [dMB11] means we can automate this step and generate counterexamples
if we cannot prove the program correct (i.e., if we cannot prove the validity of the ver-
ification condition).1 SMT solvers are the workhorses of automated reasoning. They
are constraint solvers for logic combining decision procedures for theories [KS08] such as
arithmetic, bit-vectors and uninterpreted functions. Combining these theories gives a rich
language for describing many problems including program verification. We refer the reader
to Bradley and Manna for a technical overview of these topics [BM07] and to Mackenzie
for a historical and sociological account of the development of verification [Mac01].

A program verifier is a tool using automated Floyd-Hoare logic, verification condition
generation and theorem proving. Examples of program verifiers are the Extended Static
Checker for Java (ESC/Java) [FLL+02], Boogie [BCD+05] and Why3 [FP13]. Boogie and
Why3 are also examples of intermediate verification languages designed to be the target of
program verifiers for other languages. For example, the Spec# [BLS05] and Dafny [Lei10]
program verifiers are both based on top of Boogie.

Key characteristics for practical program verifiers are precision, performance and au-
tomation.

Precision For precision, verifiers are characterised as being unsound or incomplete. Ver-
ifiers that are unsound may report false negatives: claiming that a program is correct when
it actually contains errors. Verifiers that are incomplete may report false positives: claim-
ing that a program is incorrect when it is actually error-free (we also refer to this as a
spurious error). Neither property is desirable: unsoundness means that we may miss bugs
in critical programs whereas incompleteness impacts usability since the user of the verifier
must sort through bug reports to distinguish true errors from false errors. It is impossible
to design a perfect verifier that is both sound and complete for all programs due to Rice’s
theorem [Ric53], which states that all non-trivial properties of programs are undecidable.
In general, most verifiers aim for soundness and tolerate incompleteness (which is con-
servative). Related to precision are assumptions made by or hardcoded into the verifier.
For example, a verifier may assume that integers are mathematical integers rather than
bit-vectors (machine integers).2 Assumptions can be seen as simplifications and must be

1We can check a verification condition for validity by negating the formula and checking for satisfiability
(an assignment of values to variables such that the formula is true). Then a satisfying assignment is a
counterexample to the correctness of the program.

2The assertion x < y ⇒ x < y + 1 is always true for mathematical integers (which are unbounded) but
does not hold for bit-vectors (which have wrap around behaviour).

16

carefully checked to ensure that they do not invalidate the result of verification. In partic-
ular, contradictory assumptions can lead to vacuous verification (since false ⇒ P is true
for all P).

Performance Concerns for the performance of program verifiers are speed and pre-
dictability. That is, the time to compute a response and the run-to-run variation. Per-
formance is easier to characterise than precision since we always desire faster and more
predictable techniques. Because the techniques that we consider are based on SMT solvers
we are guided by their limitations. For example, a well-known brittleness is the handling
of quantifiers [DNS05]3; hence, in this thesis we seek quantifier-free methods.

Automation Automation refers to the level of programmer assistance required to use
the program verifier, which ranges from fully manual to fully automatic. When discussing
automation it is important to state what is being verified since program verification covers
a spectrum from lightweight properties (such as the absence of data races) to full functional
specification. There is a general trade-off between the degree of automation and the
strength of properties being proven.

In this thesis, we say that a program verifier is scalable if it is capable of scaling to practi-
cal real-world programs. This is a combination of precision, performance and automation.
We require precision since the tool must be able to reason precisely about the programs of
interest. We require performance because the users of the tool should expect a response
within a reasonable amount of time and with a high-degree of predictability. For automa-
tion we favour techniques requiring minimal programmer assistance rather than manual
methods. We will focus our efforts on sound verification of lightweight safety properties.

2.1.2. The Challenge of Concurrency

A concurrent program structures its computation over multiple communicating processes.
The two dominant forms of inter-process communication are message-passing or shared-
memory. In this thesis we focus on shared-memory concurrency where processes implicitly
message through shared memory. New challenges posed by this setting are schedule ex-
plosion, orchestrating synchronisation and dealing with interference between processes.
Errors that can occur include data races, deadlocks and atomicity violations [LPSZ08].

3Detlefs et al. [DNS05] write “quantifiers are near the heart of all the essential difficulties [of designing
an SMT solver].”

17

Techniques for verifying concurrent programs include systematic concurrency testing
which aims to systematically explore all schedules [God97, MQB+08, TDB14], model
checking a finite-state system abstracted from the program [DKKW11, DKK+12], con-
current program verifiers [CDH+09, LMS09] based on concurrent program logics [Vaf08,
chap. 2] and sequential transformation which turns the concurrent program into a seman-
tically equivalent sequential program and enables sequential techniques to be applied. In
this thesis we focus on the latter technique.

2.1.3. Data-Parallel Programs

Parallelism enables multiple concurrent processes to be executed at the same time to im-
prove performance. We distinguish between parallelism that can be exploited at the bit,
instruction, data and task level. In this thesis we focus on data parallelism which is char-
acterised by “simultaneous operations across large sets of data, rather than from multiple
threads of control” [HS86]. Examples of data-parallel processors include vector, SIMD
(single instruction multiple data) and GPU (graphics processing unit) machines [HP11,
chap. 4]. In this thesis we focus on the verification of data-parallel GPU programs.

GPUs Modern GPUs are parallel many-core processors designed for throughput pro-
cessing [GK10]. Originally designed as accelerators for graphics, where the manipulation
of pixels is inherently parallel, the trend towards greater programmability and flexibility
— known as general purpose GPU (GPGPU) computing — means that GPUs are now
attractive targets for applications beyond graphics.

GPUs are commonly used as parallel coprocessors under the control of a host CPU
in a heterogeneous system. The host CPU is responsible for copying input data across
to the GPU, launching parallel programs on the GPU and fetching resulting data back
from the GPU. A typical GPU consists of multiple multiprocessors each made up of many
simple cores. Unlike CPU cores, these are simple in-order processors that eschew ag-
gressive instruction-level parallelism techniques such as branch prediction or speculation.
Each multiprocessor executes instructions in a SIMD fashion where multiple cores execute
the same instruction on different data. Distinct multiprocessors can execute independent
SIMD instructions at the same time. The memory hierarchy consists of a private memory
per core, a local memory per multiprocessor accessible by all cores on the same multipro-
cessor and a main memory accessible by all cores (across the whole GPU). It is usual for
the shared memory to be organised as a software-managed cache for scratchpad data. For
example, the NVIDIA Fermi architecture [NVI09] uses 16 multiprocessors each consist-

18

ing of 32 cores. Each multiprocessor executes 32-wide SIMD instructions (called warps in
NVIDIA terminology). The local memory per multiprocessor is an on-chip shared memory
and is organised as a split level 1 data cache and software-managed cache. Fermi has a
unified level 2 cache and main memory is an off-chip global memory.

GPUs are programmed using a single program multiple data (SPMD) execution model
where the same program is executed in parallel over multiple cores. In this thesis we
consider the two main GPGPU programming models: CUDA and OpenCL.

CUDA CUDA [NVI12a] is an extension of the C language that allows the programmer
to write parallel programs (kernels) as well as an application programming interface (API)
for managing and orchestrating the execution of kernels on the GPU. A kernel is a template
that specifies the behaviour of an arbitrary thread. Kernels are executed by many threads
in parallel, organised hierarchically as a grid of thread-blocks. A thread-block (or, more
simply, a block) is a one-, two- or three-dimensional group of threads. Each thread within
a block is identified by a built-in 3-component variable threadIdx (indexed by x, y and
z). Blocks are themselves organised into a one-, two- or three-dimensional grid. Each
block within the grid is identified by a built-in 3-component variable blockIdx. This
means that the total number of threads that execute a kernel is the number of blocks
(the grid dimension) times the number of threads per block (the block dimension). The
grid and block dimension can be queried in a kernel by the built-in 3-component variables
blockDim and gridDim. Figure 2.1 gives an example of a two-dimensional 3× 2 grid with
4 threads per block. Using thread and block identifiers allows distinct threads to operate
on separate data and execute different control flow through the kernel.

When a kernel is executed each block of the grid is dynamically scheduled by hardware
to a multiprocessor. A multiprocessor can be assigned multiple blocks and execute them
concurrently. On each multiprocessor, a block is executed by partitioning it into a set of
warps. On NVIDIA hardware a warp is a group of 32 threads. For example a block of
512 threads is partitioned into a set of 16 warps. Warps are dynamically scheduled by
hardware on the multiprocessor. A warp instruction is a data-parallel SIMD instruction:
each thread is mapped to a core and executes the same operation over multiple data in
lock-step. This means that threads in the same warp follow the same control flow and
require predication to deal with divergent control flow. For example, if threads in the
same warp diverge due to a conditional branch then the hardware uses masking to disable
threads that do not need to take the branch (disabled threads execute the instruction as
a no-op) and then converging threads (by re-enabling masked threads) back to the same
execution path afterwards.

19

Block (0, 0)

T0 T1 T2 T3

Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Grid

Figure 2.1.: A two-dimensional CUDA grid of 3× 2 blocks each consisting of 4 threads

The CUDA memory hierarchy specifies private memory per-thread, shared memory per-
block and global memory per-grid. The shared and global memory spaces map to the
per-multiprocessor shared and off-chip global memory of the GPU, respectively. Hence,
shared memory is visible to all threads in the same block and global memory is visible to
all threads.

Threads in the same block can synchronise using a barrier operation, __syncthreads().
A barrier causes a thread to stall until all threads in the block have reached the same
barrier. This allows communication between threads in the same block via shared or
global memory since a barrier can be used to coordinate memory accesses. There are no
mechanisms for inter-block synchronisation whilst executing a kernel.4

Figure 2.2 gives a simple CUDA application that computes a one-dimensional stencil.
The stencil kernel to be run on the GPU (also called the device in CUDA) is identified by
the __global__ function qualifier. Given an input array A of length n the kernel computes
the values of a new output array B where each element is the sum of its neighbouring ele-
ments. For example, given the input [0, 1, 2, 3, 4, 5, 6, 7] with n = 8 and radius 1 the kernel
computes [(0+1), (0+1+2), . . . , (5+6+7), (6+7)] to yield [1, 3, 6, 9, 12, 15, 18, 13]. In the

4 A workaround is to synchronise at the kernel level by splitting the kernel into two and executing the
kernels serially. Then all accesses of the first kernel are guaranteed to have completed (and be visible)
to any thread of the second kernel.

20

__global__ void stencil(int *A, int *B, int radius, unsigned n) {
unsigned tid = blockDim.x * blockIdx.x + threadIdx.x;

int sum = 0;
for (int i=-radius; i<=radius; i++) {

int idx = tid + i;
if (0 <= idx && idx < n) {
sum += A[idx];

}
}

if (tid < n) B[tid] = sum;
}

void hostStencil(int *A, int *B, int radius, unsigned n) {
// device copies of A and B
int *d_A; int *d_B;

// allocate arrays on device
size_t sz = sizeof(int)*n;
cudaMalloc(&d_A, sz); cudaMalloc(&d_B, sz);

// copy input to device
cudaMemcpy(d_A, A, sz, cudaMemcpyHostToDevice);

// launch kernel
stencil<<<1,n>>>(d_A, d_B, radius, n);

// copy output from device
cudaMemcpy(B, d_B, sz, cudaMemcpyDeviceToHost);

// free allocated arrays
cudaFree(d_A); cudaFree(d_B);

}

Figure 2.2.: A CUDA stencil application

kernel, each thread has a private variable tid which is assigned the id of the thread using
the built-in variables threadIdx, blockIdx and blockDim. Data parallelism is achieved
because each thread computes a different output element: each thread accumulates the
sum of its neighbouring elements into a private variable, sum, and writes the result to B.
The kernel has divergent control flow due to the condition 0 ≤ idx < n within the loop.
This ensures that threads assigned elements at the start or end of the array will not access
out-of-bound locations.

The kernel is launched by the CPU (also called the host in CUDA) in the hostStencil
function by using the triple bracket syntax <<<gridDim, blockDim>>> which specifies the
number of threads that will execute the kernel: gridDim gives the number of blocks in
the grid and blockDim gives the number of threads per block. In this instance, the host
launches a single group of n threads. Before executing the kernel the host is responsible
for allocating the arrays and initialising the input. This is possible because both the host

21

Table 2.1.: Equivalent terminology for CUDA and OpenCL
Term CUDA OpenCL
Thread Thread Work-item
Subgroup Warp Subgroupa

Group Block Work-group
Grid Grid NDRange
Local Memory Shared Local
Global Memory Global Global
Group Synchronisation __syncthreads() barrier()b

aIntroduced by OpenCL 2.0 extension and not exposed in the core feature set of OpenCL [Khr13b]
bAn OpenCL barrier can specify a set of flags to determine the scope of the barrier with respect to local

and global memory [Khr13b]

and device can access the global memory space of the GPU. After allocating two arrays
in global memory (accessible through the device pointers d_A and d_B) the host initialises
the input A using a memory copy. Then the kernel can be launched and executed in
parallel. Scalar formal parameters (i.e., radius and n) to the kernel are passed directly
at invocation. After the kernel has completed the host copies the output back. In this
application the malloc, memcpy and kernel execution are synchronous and therefore each
call blocks until it completes.5

OpenCL OpenCL is an open industry standard for programming heterogeneous systems
developed by the Khronos group [Khr13b]. OpenCL bears many similarities with CUDA
but is designed to support a wider range of target architectures including multicore CPUs
and embedded devices. The terminology also varies from CUDA and we summarise these
in Table 2.1. In general, we will use the terminology in the first column except when
discussing CUDA or OpenCL directly. Because OpenCL is designed for a range of target
architectures the division of a group into subgroup (a warp in CUDA terminology) is not
programmer visible in the core OpenCL feature set.6

Figures 2.3 and 2.4 give an OpenCL translation of the CUDA stencil example of Fig-
ure 2.2. The translation of the kernel is straightforward where we use the built-in function
get_global_id(0) instead of computing the id of the thread and we are required to an-
notate the array pointers with the memory space in which they reside. The translation

5 Concurrent execution of CUDA calls is possible using streams. This allows concurrent kernel execution
and overlapped kernel computation and data transfer between the host and device. In the simple
example of Figure 2.2 we rely on the default stream which is implicitly in-order and synchronised.

6Subgroups were introduced in the OpenCL 2.0 extension and are an implementation-defined feature.

22

__kernel void stencil(__global int *A, __global int *B, int radius, unsigned n) {
unsigned tid = get_global_id(0);

int sum = 0;
for (int i=-radius; i<=radius; i++) {

int idx = tid + i;
if (0 <= idx && idx < n) {
sum += A[idx];

}
}

if (tid < n) B[tid] = sum;
}

Figure 2.3.: OpenCL version of the stencil kernel in Figure 2.2

of the host code requires additional setup to choose a target device. The code also shows
that kernels can be compiled at runtime in OpenCL.

2.1.4. Data Races and Barrier Divergence in GPU Kernels

Data Races In this thesis we distinguish between two types of data race in GPU kernels.
An inter-group data race occurs if there exist two distinct threads s and t in different groups
such that: (i) s writes to a location in global memory and (ii) t writes to or reads from
the same location. An intra-group data race occurs if there exist two distinct threads s
and t in the same group such that: (i) s writes to a location in global or local memory,
(ii) t writes to or reads from the same location and (iii) there is no intervening barrier
synchronisation.

GPU programming models admit further kinds of data race that we do not consider
further. An inter-kernel data race occurs if there exist two distinct threads s and t in
different kernels such that (i) s writes to a location in global memory and (ii) t writes to
or reads from the same location. This is possible in CUDA and OpenCL due to the ability
to launch and execute multiple kernels on the same GPU. Ignoring this scenario is akin
to assuming that multiple kernels must be launched and executed serially. A host-kernel
race occurs if there exists a thread s in the kernel such that: (i) s writes to a location in
global memory and (ii) the host writes to or reads from the same location; or, the reverse
situation where (i) the host writes to a location in global memory and (ii) s writes to or
reads from the same location. This is possible in CUDA and OpenCL due to the ability for
the host to continue executing whilst a kernel executes on the GPU. Ignoring this scenario
is akin to assuming that the host blocks until a kernel terminates.

23

void hostStencil(int *A, int *B, int radius, unsigned n) {
// setup OpenCL platform and device
cl_platform_id platform;
cl_device_id device;
clGetPlatformIDs(1, &platform, NULL);
clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 1, &device, NULL);
cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, NULL);
cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);

// fetch and compile kernel
std::ifstream f("stencil.cl", std::ios::in);
std::stringstream ss;
ss << f.rdbuf();
const std::string& str = ss.str();
const char *s = str.c_str();
cl_program program = clCreateProgramWithSource(context, 1, (const char **)&s, NULL, NULL);
clBuildProgram(program, 1, &device, "", NULL, NULL);
cl_kernel kernel = clCreateKernel(program, "stencil", NULL);

// device copies of A and B
cl_mem d_A; cl_mem d_B;

// allocate arrays on device
size_t sz = sizeof(int)*n;
d_A = clCreateBuffer(context, CL_MEM_READ_ONLY, sz, NULL, NULL);
d_B = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sz, NULL, NULL);

// copy input to device
clEnqueueWriteBuffer(queue, d_A, CL_TRUE, 0, sz, A, 0, NULL, NULL);

// launch kernel
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&d_A);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&d_B);
clSetKernelArg(kernel, 2, sizeof(int), (void *)&radius);
clSetKernelArg(kernel, 3, sizeof(unsigned), (void *)&n);
size_t global_work_size = n; size_t local_work_size = n;
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_work_size, &local_work_size, 0, NULL, NULL);
clFinish(queue);

// copy output from device
clEnqueueReadBuffer(queue, d_B, CL_TRUE, 0, sz, B, 0, NULL, NULL);

// free allocated arrays
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);

}

Figure 2.4.: OpenCL version of the stencil host code in Figure 2.2

24

(a) (b)
if ((tid % 2) == 0)

barrier();
else

barrier();

x = (tid == 0) ? 1 : 4;
y = (tid == 0) ? 4 : 1;
for (i=0; i<x; i++) {

for (j=0; j<y; j++) {
barrier();

}
}

Figure 2.5.: Examples of barrier divergence. The examples are taken and adapted from
prior work [BCD+12].

Barrier Divergence We also consider a further erroneous scenario for GPU kernels.
The semantics of barriers means that all threads in the same group must synchronise at
the same syntactic barrier and furthermore, if the barrier is in a loop then every thread
must reach the barrier having executed the same number of loop iterations [BCD+12]. If
this is not the case then the kernel is barrier divergent and the behaviour of the kernel is
undefined [NVI12a, Khr13b]. The examples in Figure 2.5 exhibit barrier divergence. In
the code we use tid to denote the id of a thread. Example (a) is barrier divergent because
it allows different syntactic barriers to be reached. Due to the if-statement, threads with
even ids reach the first barrier while threads with odd ids reach the second barrier. In
example (b), the same syntactic barrier is reached by all threads but is barrier divergent
because not all threads execute the same number of loop iterations. Thread 0 will execute
the outer loop once and the inner loop four times; whereas, all other threads will execute
the outer loop four times and the inner loop once per iteration of the outer loop. We
discuss barrier divergence in more detail in Section 3.3.3.

2.2. Race Checking Techniques for GPU Kernels

In the following we review techniques for detecting races in GPU kernels. We can broadly
classify the techniques as dynamic or static. Dynamic techniques involve running the
program on concrete test cases to derive information about the executions of the program;
whereas, static techniques use program verification to reason about all executions of the
program without having to run it. Generally, we see that dynamic techniques are better
suited to bug-finding whereas static techniques are better suited to verification; this is
true beyond the domain of GPU kernels.

25

2.2.1. Dynamic Instrumentation

Given a parallel program, dynamic instrumentation works by modifying (instrumenting)
and executing the program to dynamically record all memory accesses. Subsequently, we
can determine whether the execution has a data race by examining the logs for conflicting
accesses. This technique is simple to apply and races that are uncovered are true bugs
(no false positives) because the program is executed concretely. The main weakness of
dynamic instrumentation is that it cannot give guarantees of correctness since it only
checks a single test case (out of many). Hence, dynamic instrumentation is a bug-finding
technique rather than a verification technique.

Tools that use dynamic instrumentation include work by Boyer et al. [BSW08], cuda-
memcheck [NVI12b] and GRace [ZRQA11]. The GRace tool additionally uses static anal-
ysis to avoid logging of accesses that can be conservatively assumed to be safe. This helps
reduce the runtime overheads of the dynamic instrumentation, which can otherwise lead
to large (order of magnitude) slowdowns over the uninstrumented program.

2.2.2. Dynamic Symbolic Execution

Dynamic symbolic execution uses concolic (concrete and symbolic) execution to explore
the executions of a program. Under concolic execution the program is executed in a
symbolic virtual machine (VM) where program variables can be marked as concrete or
symbolic. Symbolic variables are initially unconstrained. During execution the VM can
fork execution paths whenever it encounters a non-deterministic situation (e.g., a condi-
tional where both choices can be true or dereferencing a symbolic pointer that may point
to multiple objects). Execution can be forced along a particular path by generating con-
straints over symbolic variables. For example, if execution reaches an if-statement with
condition (x == 0) where x is an unconstrained symbolic variable then we will explore
execution paths where the condition holds (x = 0) and does not (x ̸= 0). In this way,
possible execution paths are explored.

The main advantage of this technique is that it executes the program and so does
not suffer from false positives. Additionally, if a bug is uncovered (e.g., an assertion
failure or a null pointer dereference) then the constraints over symbolic variables (called
the path condition) can be used to automatically generate a concrete test case. The main
disadvantage of dynamic symbolic execution is that it cannot give guarantees of correctness
for non-trivial programs. With enough time, exhaustive exploration of all execution paths
can give a brute-force verification guarantee. However, the path explosion problem means
that this is infeasible for non-trivial programs. Hence, this technique is better suited to

26

bug-finding than verification.
Tools that have applied dynamic symbolic execution to GPU kernels include GK-

LEE [LLS+12] and KLEE-CL [CCK11b]. In these tools the symbolic VM is adapted
to handle multiple threads and other features of GPU programming models: GKLEE
handles CUDA and KLEE-CL handles OpenCL. Both GKLEE and KLEE-CL have un-
covered data race bugs in real-world examples. A key result used by GKLEE is that,
for the purpose of checking for data races, it is sufficient to consider a single schedule:
the canonical schedule. Informally, this tells us that if a kernel is racy then all schedules
are capable of uncovering a race (although, not necessarily exactly the same race). We
refer to this result as the canonical schedule result, which was given in earlier work by
Li and Gopalakrishnan [LG10].7 GKLEE uses this result to avoid symbolically executing
all schedules; it need only consider a single canonical schedule. A second improvement to
the performance of GKLEE is given by the notion of a barrier interval (introduced in the
same work by Li and Gopalakrishnan [LG10]). A barrier interval is the set of instructions
occurring between the execution of two barriers. Because threads within the same group
synchronise at barriers it is impossible for intra-group races to occur across barriers. GK-
LEE uses this result to consider one barrier interval at a time: dynamically executing the
canonical schedule from one barrier to the next.

GKLEE and KLEE-CL explicitly represent the number of threads executing the GPU
kernel. GKLEEp is an extension to GKLEE that can avoid having to represent all threads
using parametric flows. The parametric flows of a kernel are equivalence classes that
partition the threads of the kernel. Threads in the same parametric flow share the same
thread-dependent control flow. The idea is that the behaviours of all threads in the same
parametric flow can be reduced to a single representative thread. Hence only pairs of
representative threads in different parametric flows need to be considered for race checking.
This is a form of thread reduction and gives scalability improvements over GKLEE.

2.2.3. Hybrid Techniques

Hybrid techniques uses both dynamic and static techniques in conjunction. Li et al. have
extended the ideas of GKLEE and GKLEEp into a hybrid tool, SESA [LLG14], combining
dynamic symbolic execution and static analysis. The key idea is to use a taint analysis
to identify kernel parameters that can be made concrete without affecting path coverage.
This information is used to merge parametric flows and hence give scalability improvements
over GKLEEp.

7 This work introduced the PUG verifier, which we discuss in Section 2.2.4.

27

Work by Leung et al. [LGA+12] has applied test amplification to GPU kernels. The idea
of test amplification is to generalise the results of a single dynamic run into a stronger
property about all program behaviours. Initially, a CUDA kernel is instrumented and
executed with dynamic race checking enabled. If no race is uncovered then the race-
freedom result (of the single dynamic run) can be amplified using a static flow analysis.
The static flow analysis determines whether the kernel is access invariant: if the kernel
always issues the same set of memory accesses regardless of the kernel inputs. The analysis
is a taint analysis that conservatively tracks the inputs of the kernel and ensures that (i)
no tainted variable is used in the address computation of any memory access and (ii) no
memory access is control-dependent on a tainted variable. If the kernel is access invariant
then race-freedom can be amplified to all executions of the program. At a high-level, test
amplification can be viewed as a form of dynamic symbolic execution that reduces the
number of paths that need to be explored to the path associated with a single test case.
For the purposes of race checking all executions of an access invariant kernel are equivalent.
The main advantage of this technique is that it combines the strengths of dynamic and
static approaches. However, test amplification is inapplicable for access variant kernels
and is difficult to generalise to richer functional properties.

2.2.4. Static Verification

The following techniques are program verifiers using static verification. Unlike dynamic
techniques, static verification can offer guarantees of correctness. However, a recurring
weakness of these techniques is the need for invariants. An invariant is a property that
captures program behaviours by expressing a fact that always holds at a particular pro-
gram point (e.g., that a variable is always greater than 0). Invariants are vital in static
verification for precise reasoning and avoiding false positives. We discuss invariants in
detail in Chapter 3.

Permission-Based Separation Logic Work by Blom et al. [BHM14] has applied
permission-based separation logic for proving data race-freedom and functional specifica-
tions of GPU kernels. Separation logic [Rey02] is an extension to Floyd-Hoare logic that
enables reasoning about shared resources such as dynamically-allocated memory (i.e., the
heap). A key property is the ability to write assertions that split the resource into mu-
tually exclusive disjoint parts. This is a useful property for concurrent programs since
two concurrent procedures operating on disjoint resources cannot interfere and thus can
be verified separately. Permission-based separation logic allows resources (e.g., memory

28

locations) to be tagged with a permission which allows us to express sharing of resources.
The full permission 1 provides exclusive access and means that the resource can be in-
spected (i.e., the memory location can be read) and updated (i.e., the memory location
can be written to). A fractional permission in the interval (0, 1) provides non-exclusive
access and means that the resource can only be inspected (but not updated). A permis-
sion can be split and combined. For example, a full (write) permission can be split into
multiple fractional (read) permissions, and vice versa by combining. Importantly, we can
only re-acquire a full permission by combining all the fractions into which it was split.

Applying this to GPU kernels means that if we can specify the permissions of a kernel
with respect to shared state then the kernel is race-free. This is because the soundness of
the logic means that only a single thread may hold a full write permission at any point of
the kernel. The authors have implemented this method as a program verifier on top of the
Chalice tool [LMS09]. This approach allows full functional correctness of GPU kernels to
be proven. The main disadvantage of this technique is that non-trivial kernel annotations
and invariants must be manually provided and hence this technique cannot in its current
form be used for automatic race checking.

Non-Interference Checking The work of Tripakis et al. [TSL10] is concerned with
proving the equivalence of SPMD programs (in particular, CUDA kernels). For example,
showing that an optimised kernel is functionally equivalent to a naive implementation.
The work focuses on race-freedom (called non-interference by the paper) because this is
critical for showing that a GPU kernel is deterministic.8 Race-freedom is checked by
generating a verification condition that asserts that all pairwise memory accesses made
by different threads are to distinct locations. This entails generating a quadratic number
of inequalities. The verification condition is then passed to an SMT solver. The tool
implementing this work is limited by loops and the need for invariants, which must be
manually provided.

PUG The PUG tool [LG10] verifies GPU kernels for race-freedom by encoding a similar
verification condition as the technique by Tripakis et al. Given a CUDA program, PUG
generates a verification condition that reflects the accesses of the program from the point
of view of two symbolic (arbitrary) threads. PUG uses the canonical schedule result to
reduce the number of thread schedules that must be considered. PUG also uses the idea
of barrier intervals to incrementally consider one barrier interval at a time.

8This result is also used in the Test Amplification work of Leung et al. [LGA+12] and is similar to the
canonical schedule result [LG10]. We require and prove an analogous result in Chapter 5.

29

PUG addresses the problem of generating loop invariants by incorporating loop abstrac-
tion techniques. The tool recognises certain loop patterns and encodes invariants into the
verification condition. For example, in the following CUDA loop where A is an array in
shared memory:
for (int i=threadIdx.x; i<=N; i+=blockDim.x) {
A[i] = threadIdx.x;

}

each thread writes to elements of A at intervals of blockDim.x and hence the loop is race-
free. For example, if N = 15 and blockDim.x = 4 then thread 0 will write to elements
0, 4, 8 and 12. PUG recognises this striding behaviour and normalises the loop into the
form:
for (int j=0; j<=(N-threadIdx.x)/blockDim.x; j++) {
A[j*blockDim.x+threadIdx.x] = threadIdx.x;

}

where the new loop index j is incremented by one at each iteration. PUG inserts the
invariants 0 ≤ jt < (N − t)/B and it = jt ·B+ t where t and B denote an arbitrary thread
id and the block dimension, respectively, and we use it and jt to denote the thread-private
variables of t. The verification condition for the loop is then:

Symbolic thread ids 0 ≤ s < B ∧ 0 ≤ t < B ∧ s ̸= t ∧
Loop invariants 0 ≤ js < (N − s)/B ∧ 0 ≤ jt < (N − t)/B ∧

is = (js ·B) + s ∧ it = (jt ·B) + t ∧
Race-freedom is = it

where we use the symbolic variables s and t to represent two distinct threads. Because
the verification condition is unsatisfiable PUG infers that the loop is race-free. Without
the invariants the variables it and jt would be unconstrained and lead to a false positive.

The need for invariants is the largest source of imprecision in PUG. The tool allows the
programmer to annotate loops with invariants. However, these user-supplied invariants
(as well as the ones inserted automatically by PUG) are assumed to be true rather than
being checked and hence are a potential source of unsoundness (leading to false negatives).

GPUVerify GPUVerify is a program verifier for GPU kernels [BCD+12, BBC+14]. At
a high-level, GPUVerify is similar to PUG and the work of Tripakis et al. The principal
difference is the technique used to generate verification conditions. GPUVerify also exploits
the property that race-freedom is a pairwise property but, rather than directly encoding
the kernel as a logical formula, GPUVerify translates the kernel into a sequential program

30

that models the behaviour of an arbitrary pair of threads; the correctness of this program
implies the race-freedom of the given kernel. This has the advantage that the soundness
of GPUVerify depends only on (i) showing that the translation is sound and (ii) applying
a sound program verifier to the resulting sequential program. A second advantage is that
GPUVerify can use standard sequential verification technology for verifying the sequential
program. GPUVerify translates the kernel into a sequential Boogie [BCD+05] program.
Section 2.3 gives a detailed description of the transformation of a kernel into a sequential
program.

After transforming the program GPUVerify also generates loop invariants to avoid spu-
rious errors. Unlike PUG, these are checked and so an inconsistent invariant cannot lead
to false negatives.

2.3. Kernel Transformation

We now review the verification method of GPUVerify, which has also been explained
in prior work [BCD+12, BBC+14]. As discussed, the essential idea of GPUVerify is to
translate a parallel GPU kernel K into a sequential program P such that the correctness
of the program P implies the race-freedom of the kernel K. We refer to this as the
kernel transformation. The kernel transformation involves three steps: predication, race
instrumentation and a two-thread reduction with shared state abstraction.

2.3.1. Predication

A predicated statement p⇒ stmt, where p is a predicate and stmt is a statement, has the
same effect as stmt if p is true and behaves as a no-op if p is false. Predication allows
us to convert control flow into data flow [AKPW83] and is essential for handling loops
and conditions using a lock-step semantics. Predication introduces new thread-private
variables which determine whether a thread is enabled or disabled at each statement. An
if-statement can be predicated by introducing a fresh thread-private variable p into which
all threads evaluate the condition, subsequently all threads execute both the then and
else branches of the condition, predicated by p and ¬p, respectively. Similarly, a loop
can be predicated by introducing a fresh thread-private variable p into which all threads
evaluate the guard, subsequently all threads repeatedly execute the loop body (including
the re-evaluation of the guard) under the predicate p until the guard is false for all threads.
Predication ensures that threads that do not need to continue the execution of the loop
(i.e., if they evaluate the guard to false) will execute the statements in the body of the

31

loop as no-ops.
Predication is the key transformation for yielding a sequential program. The parallel

kernel is transformed into a lock-step sequential program where each thread follows the
same control flow. Predication chooses a fixed schedule that removes reasoning about
thread interleavings. The soundness of this approach relies on the canonical schedule
result [LG10]. Work by Collingbourne et al. [CDKQ13] has shown the equivalence between
lock-step semantics and interleaving semantics for GPU kernels.

2.3.2. Two-Thread Reduction with Shared State Abstraction

An important observation used by PUG and GPUVerify is that data race-freedom and
barrier divergence are pairwise properties: a race occurs when accesses by two threads
conflict and barrier divergence occurs when two threads reach a barrier and one thread
is enabled and the other is disabled. Based on this observation we consider a translation
of the kernel where we only model the execution of a pair of threads. If we can prove
this translated program is race-free and divergence-free for a pair of distinct but otherwise
arbitrary pair of threads then we have shown that the original kernel is race-free and
divergence-free for all pairs of distinct threads (i.e., the kernel is race-free and divergence-
free). We call this translation the two-thread reduction. The two-thread reduction is the
key transformation for yielding a tractable sequential program for scalable verification.

As part of the two-thread reduction we duplicate thread and group id variables so that
each thread has a private copy. A precondition over these variables ensures that we choose
a distinct and arbitrary pair of threads. As a simplified example, for a one-dimensional
group of N threads, we introduce two thread ids tid$1 and tid$2 corresponding to the
id of the first and second thread, respectively, with the following precondition:

0 ≤ tid$1 < N ∧ 0 ≤ tid$2 < N ∧ tid$1 ̸= tid$2

This straightforwardly generalises to multi-dimensional groups and grids with multiple
groups.

Variable duplication also applies to thread-private variables. Each thread-private vari-
able v is duplicated into a pair of v$1 and v$2 variables. This includes scalar formal
parameters to the kernel. More generally, given an expression e we can dualise it into
e$1 and e$2 expressions that correspond to the expression for the first and second thread,
respectively. For example, the expression (v * w) + tid where v and w are thread-private
variables is dualised into (v$1 * w$1) + tid$1 and (v$2 * w$2) + tid$2.

For soundness the two thread-reduction must abstract shared state. Intuitively, the

32

assume (∀ x : A[x] == x);
A[tid] = 0;
barrier();
if (tid != N-1) {
B[A[tid+1]] = tid;

}

Figure 2.6.: A counterexample showing the necessity of shared state abstraction

purpose of the shared state abstraction is to over-approximate the behaviour of threads
not modeled by the two-thread reduction. In particular, the shared state abstraction
determines the contents of shared state, as seen by each thread.

Necessity of Shared State Abstraction Figure 2.6 gives a counterexample showing
that the two-thread reduction is unsound if we do not abstract shared state. The code
uses tid to denote the id of a thread and A and B are arrays in shared state. We assume
that the kernel is executed by a single group of N threads and that initially A[x] = x for all
elements x. The example has a race because all threads set their corresponding element
of A to 0 and so, after the barrier, all threads (except for thread N − 1) will race to write
to B[0]. Suppose that we do not abstract shared state. Then, because every thread s

only writes 0 to its corresponding element A[s] and has not modified A[s+1] we erroneously
preserve the initial condition that A[s+1] = s+1. This holds similarly for another distinct
thread t so that the writes to B will be disjoint: thread s and t will write to B[s+ 1] and
B[t+ 1], respectively (if the threads s and t are adjacent when s+ 1 = t then s will write
to B[0] and t will write to B[t+ 1]). That is, a race will not be reported.

A proof of the soundness of the two-thread reduction with shared state abstraction is
given in prior work [BCD+12]. The simplest and coarsest abstraction is the adversar-
ial abstraction, employed by both GPUVerify and PUG, where shared state is removed.9

Under this abstraction all reads to shared state receive arbitrary values and all writes to
shared state are no-ops. A second abstraction called the equality abstraction, employed
only by GPUVerify, models a consistent but still arbitrary shared state. Under this ab-
straction reads from the same location receive consistent, but still arbitrary, values and all
writes to shared state remain as no-ops. The essential difference is that reads by different
threads will see the same value under the equality abstraction (as long as neither thread
has written to the location, which is a race condition); this is not guaranteed under the
adversarial abstraction. We discuss this further and develop richer abstractions for shared

9 PUG implicitly uses the adversarial abstraction by leaving the values read from shared state uncon-
strained.

33

state in Chapter 4.

2.3.3. Race Instrumentation

The purpose of race instrumentation is to record accesses made by the kernel for race
checking. Intuitively, race instrumentation allows us to track the read and write sets of
an arbitrary pair of distinct threads (introduced by the two-thread reduction). Then a
race has occurred if the write set of the first thread intersected with the read or write set
of the second thread is non-empty. A direct encoding of sets requires quantifiers and is
undesirable since quantifiers are difficult for SMT solvers to reason about.10 Instead we
give two quantifier-free encodings for race instrumentation given in prior work: a non-
deterministic set encoding [BCD+12] and a watchdog encoding [BBC+14].

For simplicity we initially describe both encodings omitting predication and limited to
checking intra-group data races (ignoring inter-group data races). Ignoring inter-group
races simplifies the presentation because we can treat arrays in local and global memory
spaces equivalently. We discuss how to lift these restrictions when we summarise the
encodings at the end of this section. In the following we refer to an array in shared state
to mean an array in either memory space.

Non-Deterministic Set Encoding Under this encoding we represent the read and
write sets implicitly by exploiting non-determinism, as introduced by work from Don-
aldson et al. on DMA (direct memory access) race analysis for heterogeneous multicore
programs [DKR11]. For each array A in shared state we introduce

• Boolean variables rdExistsA and wrExistsA, and

• integer variables rdOffsetA and wrOffsetA.

The pair (rdExistsA, rdOffsetA) forms an option type that can log at most one read access
from the array. If rdExistsA is true, then rdOffsetA is the (byte) offset of an access to A
that has been logged; otherwise, rdExistsA is false and no read access has been captured

10 We can encode a set as a map of type Int → Bool giving the characteristic function of the set. That is,
if an element i is a member of the set then i is mapped to true and mapped to false otherwise. Using
this encoding requires quantifiers to (i) initialise and empty the set (i.e., to assume for all elements i
that the map of i is false) and (ii) express assertions (in particular, loop invariants) about the elements
of the set (e.g., the property P (i) holds for all elements i where the map of i is true). Therefore, due to
the loop-cutting transformation (Section 3.1.1), this entails both asserting and assuming a quantified
property for each abstracted loop. An early prototype of GPUVerify used this direct encoding but
moved to quantifier-free encodings due to performance issues [BCD+12].

34

(the value of rdOffsetA is irrelevant). Initially the rdExistsA and wrExistsA variables
are false and they are reset at each barrier.

Each read from A in the original kernel is translated into a call to a logging procedure
and a second call to a checking procedure. The logging procedure (respectively, checking
procedure) is called by the first thread (respectively, second thread) of the two-thread re-
duction. This asymmetric treatment of threads is sound because the two-thread reduction
will consider all pairs of threads: i.e., if the pair (s, t) is considered then so will (t, s).
Each call is passed the offset of the read (in bytes), offset. The logging procedure non-
deterministically decides to do nothing or capture the read access by setting rdExistsA
to true and setting rdOffsetA to offset. The non-determinism allows us to capture an
arbitrary element of the read set. The machinery is analogous for the logging of write
accesses to A using the pair (wrExistsA, wrOffsetA). The checking procedures assert that
the intersection of the read and write sets is empty. That is, the read checking procedure
asserts

wrExistsA ⇒ wrOffsetA ̸= offset

and the write checking procedure asserts

(wrExistsA ⇒ wrOffsetA ̸= offset) ∧
(rdExistsA ⇒ rdOffsetA ̸= offset).

The non-deterministic logging of accesses that ensures that all possible pairs of accesses
will be checked.

At a barrier we must reset the tracking of accesses. An implementation choice for
achieving this is to assign false to the Boolean variables rdExistsA and wrExistsA, which
is analogous to clearing the read and write sets. However, assignment is problematic for
loops containing barriers. In this case, both rdExistsA and wrExistsA will be added
to the modset (modifies set) of the loop, even if the loop never accesses the array being
instrumented. Consequently, due to the loop-cutting transformation for verifying loops
(discussed in Section 3.1.1), the loop will require invariants to constrain these variables.
We can avoid this problem by assuming that rdExistsA and wrExistsA are false at a
barrier, which has the same effect of clearing the read and write sets but without using
assignment. We are free to do this because there always exists a path through the program
where each non-deterministic choice for capturing an access chose false.

Watchdog Under the non-deterministic set encoding, each array access leads to a non-
deterministic choice (in the logging procedure) so the number of paths through the in-

35

strumented program grows exponentially with the number of accesses. This motivated
the development of a different encoding to avoid this blow-up. The idea of watchdog race
checking is to use a single non-deterministic offset that all accesses are checked against.
We refer to this offset as the watched offset. Verification involves proving for every array
that a data race at the watched offset is impossible. Hence, because the watched offset is
arbitrary, this implies that every offset of every array is race-free.

The translation introduces the watched offset as an integer variable trOffset. The
watched offset is used to check the whole program and we use the same offset for checking
all arrays. For each array A in shared state we introduce Boolean variables rdExistsA and
wrExistsA. Initially these variables are false and they are reset at each barrier.

As in the non-deterministic set encoding we transform every read into a call to a logging
procedure and a call to a checking procedure; where the logging procedure (respectively,
checking procedure) is called by the first thread (respectively, second thread) of the two-
thread reduction. The logging procedure sets the rdExistsA variable if the offset being
read matches the watched offset. The machinery is analogous for the logging of write
accesses, which sets the wrExistsA variable if the offset being written to matches the
watched offset. The checking procedures assert that a data race at the watched offset has
not occurred. The read checking procedure asserts

wrExistsA ⇒ trOffset ̸= offset

and the write checking procedure asserts

(wrExistsA ⇒ trOffset ̸= offset) ∧
(rdExistsA ⇒ trOffset ̸= offset).

As for the non-deterministic set encoding, we need to avoid assigning to the Boolean
variables rdExistsA and wrExistsA at each barrier. However, we cannot simply assume
that these variables are false at a barrier as we did for the non-deterministic set encoding.
This is because the watchdog encoding, as described above, always captures an access in
the logging procedure and hence, there does not always exist a path where the variables
rdExistsA and wrExistsA are false. This is equivalent to assuming false, which is unsound
(all assertions in the execution after this point will pass vacuously). To avoid this problem
we introduce a new Boolean variable tracking that we havoc (assign an arbitrary value)
at each barrier and use to non-deterministically choose whether logging occurs or not.
Using this variable means that there is always a path where the logging variables are false
(when the non-deterministic choice at each barrier for the value of tracking chose false)

36

and hence we can soundly use assume statements to reset the logging variables at a barrier.
Under the watchdog encoding the number of paths through the instrumented program

grows exponentially with the number of barriers compared to exponentially with the num-
ber of array accesses under the non-deterministic set encoding. Because the number of
barriers in a kernel is typically much smaller than the number of array accesses we expect
the watchdog encoding to lead to faster verification. We confirmed this experimentally in
prior work [BBC+14].

Summarising the Encodings Table 2.2 summarises the two encodings in the presence
of predication. With predication we account for the predicate p, which we pass to the
logging, checking and barrier procedures. If p is true then the logging, checking and barrier
procedures function as before. If p is false then the logging procedure will do nothing (no-
op) and the checking and barrier procedures will vacuously pass. The addition of predicates
allows us to check for barrier divergence within the barrier procedure. We assert that
both threads are either enabled or disabled (i.e., p$1 = p$2). This precisely captures the
notion of barrier divergence formalised in prior work (see the G-DIVERGENCE rule of
[BCD+12]).

We can lift the encodings to handle inter-group data races by case splitting when (i)
the arbitrary pair of threads under consideration by the two-thread reduction are in the
same group or not and (ii) if the instrumented array resides in local or global memory.
The instrumentation variables introduced by the encodings remain the same. If the pair
of threads are in the same group then the procedures are as before. If the pair of threads
are in different groups and:

• if the array resides in local memory then race checking (for this array) can be omitted
altogether since this scenario guarantees that the threads can never race since they
will access separate group-only copies of the array; otherwise,

• if the array resides in global memory then the logging and checking procedures are
as before, but barriers cannot reset the instrumentation variables since there are
no mechanisms for inter-group synchronisation in CUDA and OpenCL [NVI12a,
Khr13b].

2.3.4. Kernel Transformation Summary and Example

Table 2.3 summarises the kernel transformation for a simple structured kernel language
showing predication, race instrumentation and the two-thread reduction with the adver-
sarial shared state abstraction. The transformation takes a statement stmt and a predicate

37

Table 2.2.: Non-deterministic set and watchdog encodings for race instrumentation. The
predicate p is introduced by predication and determines whether accesses are
tracked and also whether barrier divergence has occurred. The star * denotes
an arbitrary Boolean value.

Encoding
Non-deterministic set Watchdog

Per-program
instrumentation
variables

bool tracking; // unconstrained
const int trOffset; // unconstrained

For each array A in
shared state
introduce

bool rdExistsA; // initially false
bool wrExistsA; // initially false
int rdOffsetA;
int wrOffsetA;

bool rdExistsA; // initially false
bool wrExistsA; // initially false

Procedure
LogRdA(int offset,
bool p) defined

if (p && *) {
rdExistsA = true;
rdOffsetA = offset;

}

if (p &&
tracking && trOffset == offset) {

rdExistsA = true;
}

Procedure
LogWrA(int offset,
bool p) defined

if (p && *) {
wrExistsA = true;
wrOffsetA = offset;

}

if (p &&
tracking && trOffset == offset) {

wrExistsA = true;
}

Procedure
ChkRdA(int offset,
bool p) asserts

(p && wrExistsA ⇒
wrOffsetA != offset)

(p && wrExistsA ⇒
trOffset != offset)

Procedure
ChkWrA(int offset,
bool p) asserts

(p && wrExistsA ⇒
wrOffsetA != offset) &&

(p && rdExistsA ⇒
rdOffsetA != offset)

(p && wrExistsA ⇒
trOffset != offset) &&

(p && rdExistsA ⇒
trOffset != offset)

Procedure
Barrier(bool p$1,
bool p$2) defined

assert (p$1 == p$2);
assume (p$1⇒

!rdExistsA && !wrExistsA);

assert (p$1 == p$2);
assume (p$1⇒

!rdExistsA && !wrExistsA);
havoc(tracking);

38

__kernel void nbor(__local int *A, unsigned i, unsigned n) {
int v, w;
unsigned tid = get_local_id(0);
v = 0;
if (tid + i < n) {

v = A[tid + i];
}
w = A[tid];
// barrier required here
A[tid] = v + w;

}

Figure 2.7.: A simple OpenCL kernel containing a data race. The intention of the kernel
is to add the ith neighbouring element to each element of the array.

p (initially true) and models the execution of stmt under p for two arbitrary threads. We
use the notation e$1 and e$2 to refer to an expression e that has been dualised for the first
and second thread considered by the two-thread reduction, respectively. For example, the
assignment v = e is translated into two statements, one assignment for each thread.

As an example we consider the transformation of the OpenCL kernel in Figure 2.7. The
kernel is a simpler version of the stencil kernel given in Figure 2.3. The main difference is
that the array A is now both the input and output of the kernel. The intention of the kernel
is to take each element of the array A and sum in the ith neighbour. We assume the array is
of length n and test to make sure that we do not cause an out-of-bounds array access. This
kernel contains a data race if i ̸= 0 because there is no synchronisation between the read
of the neighbour A[tid+i] into v and the write of the result into A[tid]. For example,
if i = 1 then thread 0 will read from and thread 1 will write to A[1]. Figure 2.8 gives
the transformed kernel after predication, the two-thread reduction using the adversarial
shared state abstraction and race instrumentation.

2.3.5. Further Considerations

The kernel transformation that we have presented covers the core ideas of GPUVerify.
However there are many further aspects, addressed by other GPUVerify papers [BCD+12,
CDKQ13, BD14, BBC+14], that are important for building a practical program verifier.
We discuss the most important issues here.

Pointers Reasoning about pointers is a long-standing problem for verification due to
aliasing. However, in prior work [BCD+12], we observe that GPU kernels do not typically
use complicated pointer manipulation. This enables a straightforward approach used in
GPUVerify [BCD+12]. Pointers are modeled as a pair of an array enumeration base and

39

Table 2.3.: Kernel transformation for structured programs showing predication, race in-
strumentation and the two-thread reduction with the adversarial shared state
abstraction. The predicated statement p ⇒ stmt has the same effect as stmt
if p is true and behaves as a no-op if p is false. We simplify the predicated
statement true ⇒ stmt by writing stmt. The race instrumentation and barrier
procedures take the predicates of each thread as arguments.

stmt translate(stmt, p)

v = e; p$1⇒ v$1 = e$1;
p$2⇒ v$2 = e$2;

x = A[e]; LogRdA(e$1, p$1);
ChkRdA(e$2, p$2);
p$1⇒ v$1 = *; // adversarial abstraction
p$2⇒ v$2 = *; //

A[e] = f; LogWrA(e$1, p$1);
ChkWrA(e$2, p$2);
// writes become no-ops

barrier(); Barrier(p$1, p$2);

S; T; translate(S, p);
translate(T, p);

if (e) { S } else { T } // q and r are fresh
q$1 = p$1 && e$1;
q$2 = p$2 && e$2;
r$1 = p$1 && !e$1;
r$2 = p$2 && !e$2;
translate(S, q);
translate(T, r);

while (e) { S } // q is fresh
q$1 = p$1 && e$1;
q$2 = p$2 && e$2;
while (q$1 || q$2) {

// translate body
translate(S, q);
// re-evaluate guard
q$1 = q$1 && e$1;
q$2 = q$2 && e$2;

}

40

// Two-thread reduction introduces 2 arbitrary threads
int tid$1;
int tid$2;

// Assume there are N threads in total
const int N;
axiom N == 8;

// Shared state abstraction removes declaration of array A
// Two-thread reduction dualises scalar formals i and n
procedure nbor(int i$1, int i$2, int n$1, int n$2, bool P$1, bool P$2)

// Ensure threads are in range and distinct
requires 0 <= tid$1 && tid$1 < N;
requires 0 <= tid$2 && tid$2 < N;
requires tid$1 != tid$2;
// Scalar formals initially equal
requires i$1 == i$2;
requires n$1 == n$2;
// Clear read/write sets
requires !rdExistsA && !wrExistsA;
// Predication assumes enabledness
requires P$1 && P$2;

{
// Dualised local variables
int v$1, v$2;
int w$1, w$2;

// Fresh Predicates
bool Q$1, Q$2;

// Translation of "v = 0"
P$1⇒ v$1 = 0;
P$2⇒ v$2 = 0;

// Translation of if-statement
Q$1 = P$1 && (tid$1 + i$1 < n$1);
Q$2 = P$2 && (tid$2 + i$2 < n$2);
// Translation of "v = A[tid+i]"
LogRdA(tid$1 + i$1, Q$1);
ChkRdA(tid$2 + i$2, Q$2);
Q$1⇒ v$1 = *;
Q$2⇒ v$2 = *;

// Translation of "w = A[tid]"
LogRdA(tid$1, P$1);
ChkRdA(tid$2, P$2);
P$1⇒ w$1 = *;
P$2⇒ w$2 = *;

// Uncommenting this barrier fixes the race
// Barrier(P$1, P$2);

// Translation of "A[tid] = v + w"
LogWrA(tid$1, P$1);
ChkWrA(tid$2, P$2);
// write to A[tid] is no-op

}

Figure 2.8.: Kernel transformation of the kernel in Figure 2.7

41

an integer offset. The array enumeration is the list of arrays in shared state (including
special NULL and uninitialised values) and the offset captures the element of the array
pointed-to by the pointer. We use Steensgaard’s analysis [Ste96] to over-approximate
aliasing and use this information as a case-split within the logging and checking procedures.

Unstructured Control Flow The use of gotos (as well as short-circuit evaluations,
switch statements, break, continue and arbitrary returns) means that GPU kernels can
exhibit unstructured control flow. Work by Collingbourne et al. [CDKQ13] addresses the
kernel transformation for programs with reducible control flow graphs, which, in practice
covers all unstructured GPU programs.11 This work also enables GPUVerify to use the
Clang [Cla] compiler as a frontend, which greatly aids the robustness of the tool for
handling tricky syntactic features.

Benign Data Races A benign data race is a data race that does not cause observable
non-determinism. Benign data races are usually intended and do not affect the correctness
of the program. For example, consider a kernel that tests if there exists an element of
an array that satisfies some predicate and sets a flag (in shared state and initially false)
if this is the case. The test of each element can be computed in parallel and all threads
where the predicate evaluates to true can update the output flag. This is an example of
a benign write-write data race where all threads (that update the output) race but are
guaranteed to write the same value. A benign read-write data race occurs if the writing
thread is guaranteed to write the same value that the reading thread will observe.

It is not possible to precisely capture this behaviour using the adversarial abstraction
since reads always receive arbitrary values. However with the equality abstraction we
can tolerate benign races by additionally logging the values read or written and adding
a conjunct to the check procedures to ensure that the values of the accesses are differ-
ent [BCD+12].

Subgroups and Atomics Work by Bardsley and Donaldson has addressed both sub-
groups and atomics [BD14]. The kernel transformation must take these features into
account since they both affect race checking. As discussed in Section 2.1.3, a subgroup is
an implementation detail that specifies the division of a group into smaller subgroups for
execution. Because threads in the same subgroup execute in lock-step they are implicitly
11All cycles in a reducible control flow graph (CFG) are natural loops with a unique header, single entry

point and one or more back edges from nodes of the loop body to the header [ALSU06]. Collingbourne
et al. note that all kernels that they have examined have reducible control flow and whether irreducible
control flow is legal in OpenCL is implementation-defined [Khr13a].

42

synchronised and this means explicit barriers can be omitted when it is known that only
a single subgroup will access memory. Using this as an optimisation depends on knowing
the size of a subgroup on the target architecture for correctness. Previous versions of the
CUDA programming guide encouraged this optimisation, however, we note this advice
was removed in later versions (≥ 5.0) [NVI12a]. CUDA and OpenCL also support read-
modify-write atomic operations such as compare-and-swap. Concurrent atomic operations
to the same location are not considered to cause a data race.

Termination As discussed in Section 2.1.1 in this thesis we use correctness in the sense
of partial correctness, ignoring termination. Work by Ketema and Donaldson has ad-
dressed the problem of termination analysis for GPU kernels by adapting an existing
termination tool [KD14].

Performance and Error Reporting Performance and error reporting are key char-
acteristics for usability. In prior work we gave optimisations for improving verification
performance and discussed the need for meaningful error reports [BBC+14]. These as-
pects, which greatly affect the user experience, are important considerations for practical
program verifiers since programmers will not tolerate unresponsive or opaque tools. When
discussing industry uptake of the Coverity analyser [BBC+10], the authors write, “most
[customers] require that checking runs complete in 12 hours, though those with larger code
bases grudgingly accept 24 hours” about performance. They also observe that it is better
to completely abandon analyses than to present difficult-to-understand reports.

2.4. Summary

We have reviewed dynamic, hybrid and static techniques for analysing data races in data-
parallel GPU kernels and, in particular, focused on GPUVerify, which can verify that a
kernel is data race-free.

The kernel transformation, which is the heart of GPUVerify, is sound, but incomplete:
i.e., errors reported by the tool may be spurious (false positives). These false positives can
arise from a number of sources: (i) abstract handling of floating-point operations, (ii) the
abstraction of shared state, or (iii) insufficiently strong loop invariants. For example, the
following example causes a spurious error due to (i) abstract handling of floating-point
operations. In the code we use tid to denote the id of a thread and assume A is an array
in shared state.
float ftid = tid + 0.0f;

43

A[(unsigned)ftid] = tid;

The spurious error is reported because the floating-point addition is handled by GPUVerify
as an uninterpreted function and hence the value of ftid is arbitrary. In practice, based
on an analysis of a benchmark suite consisting of 564 kernels collected from nine sources
(further detailed in Chapter 3), we find that (iii) is by far the most common limitation,
(ii) sometimes occurs and (i) was not encountered. Motivated by this observation we will
turn to the problem of insufficiently strong loop invariants in Chapter 3 and the problem
of the abstraction of shared state in Chapter 4.

44

3. Scaling Up Candidate-Based Invariant
Generation

In this chapter we investigate methods to achieve scalable and automatic verification for
GPU kernels. A key problem in automating GPUVerify is the generation of invariants. An
invariant is a property that captures program behaviours by expressing a fact that always
holds at a particular program point. Invariants are vital in static verification for modular
reasoning about loops and procedure calls [Flo67]. Inside GPUVerify, invariant generation
for loops is critical for precise reasoning and avoiding spurious errors. The problem of
discovering invariants automatically is known as invariant generation. GPUVerify uses a
candidate-based invariant generation approach where invariants are generated from a set
of possible candidates, themselves generated by rules or simple analyses. An important
trade-off is that of precision and performance: generating more candidates is potentially
useful for precise analysis but also potentially detrimental to performance. The main
results of this chapter are:

• A set of candidate generation rules that enable precise reasoning of GPU kernels.

• A new parallelisable method for accelerating candidate-based invariant generation
via under-approximating analyses.

• A principled exploration of the trade-offs between automatic and scalable verification
for GPU kernels with respect to lightweight safety properties. Over a benchmark
suite comprising 356 GPU kernels, we find that candidate-based invariant generation
allows precise reasoning for 256 (72%) kernels and our acceleration strategies yield
an overall speedup of 1.25× across all kernels.

3.1. Preliminaries

To begin, we present details on the use of loop invariants in program verification (3.1.1),
how candidate-based invariant generation operates (3.1.2) and the role of invariant genera-

45

tion in GPUVerify (3.1.3). We discuss the relationship between candidate-based invariant
generation and other invariant generation techniques in Section 3.7.

3.1.1. Loop Invariants

A loop invariant captures the behaviour of an arbitrary loop iteration by expressing a
property that holds each time the loop head is reached during execution. Loop invariants
are established inductively: they must hold on loop entry, the base case, and must be
maintained by each execution of the loop, the step case. The step case assumes that the
invariant (the inductive hypothesis) and loop guard hold and then checks that executing
the body results in a state which satisfies the invariant. Figure 3.1 gives two examples.

(a) (b)
// i, j are integers
i = 0; j = 0;
while (i < 100)
invariant j == 2*i;
invariant j <= 200;
invariant 0 <= j;

{
i = i + 1;
j = j + 2;

}
assert j == 200;

// i is an integer; v, n, m are 32-bit bit-vectors
n = v; m = 0; i = 0;
while (n != 0)
invariant n == v >> i;
invariant m == v & ((1 << i) - 1);

{
if ((n & 1) == 1) {
m |= 1 << i;

}
i = i + 1;
n = n >> 1;

}
assert m == v;

Figure 3.1.: Two loops requiring loop invariants

In example (a) the loop repeatedly increments two variables, i and j. The invariants j = 2i

and j ≤ 200 suffice to prove the assertion at the end of the program because assuming
only these invariants and the negation of the loop guard we can prove that the assertion
condition holds, i.e., j = 2i ∧ j ≤ 200 ∧ 100 ≤ i⇒ j = 200. The first invariant j = 2i is
inductive in isolation since it holds on entry to the loop when i = j = 0 (base case) and is
maintained by the loop (step case): assuming the invariant and loop guard then executing
the body preserves the invariant, i.e., j = 2i ∧ i < 100 ⇒ (j + 2) = 2(i+ 1). The second
invariant is not inductive in isolation since j ≤ 200 ∧ i < 100 ̸⇒ (j + 2) ≤ 200 (e.g., if
i = 0 and j = 200); it is only inductive in conjunction with the first invariant. The third
invariant 0 ≤ j is inductive by itself1 but is not necessary for proving the assertion, nor
strong enough to prove the assertion in isolation: 0 ≤ j ∧ 100 ≤ i ̸⇒ j = 200 (e.g., if
i = 100 and j = 0).

1The invariant 0 ≤ j is only inductive by itself if we assume mathematical integers; this would not be
the case with machine integers because overflow allows 0 ≤ j ∧ i < 100 ̸⇒ 0 ≤ (j + 2) (e.g., if j is the
maximum positive integer value).

46

In example (b) the loop is an obfuscated assignment of v into m using bitwise operations;
the value of v is copied bit-by-bit. Assume that v, n and m are 32-bit bit-vectors that
can be interpreted as unsigned integers. Initially, we assign v into n and then proceed
to a loop that will destruct n. The loop continues while the bitwise value of n has some
bits that are set. At each iteration, (i) if the least-significant bit of n is set then we
set the corresponding bit i of m; and (ii) we shift n right and increment i. The two
invariants capture the essential relationship between v, m and i and suffice to prove the
assertion. The first invariant is inductive in isolation; the second invariant is only inductive
in conjunction with the first invariant.

More formally, the loop-cutting transformation, originating from the foundational work
of Floyd [Flo67] and described, for example, by Barnett and Leino [BL05], replaces a
loop with a loop-free sequence of statements that over-approximates the behaviour of the
loop using its invariant, making the checks of the base and step cases for the invariant
explicit (Figure 3.2). The correctness of the transformed loop implies the correctness of the
original loop. The transformation yields an over-approximation of the loop because of the
statement havoc modset(B). The modset (modifies set) of B is every variable that may be
assigned in the loop body and havoc-ing sets each of these variables to a non-deterministic
value. This conservatively over-approximates the loop because it captures at least those
states that can be reached through execution of the loop. Informally, we can think of
the havoc of the modset followed by the assumption of the invariant as ‘teleporting’ to
an arbitrary loop iteration satisfying the invariant. After applying this transformation we
have a new program with one fewer loop that over-approximates the original program.
We can proceed by repeatedly applying the loop-cutting transformation until we have a
loop-free program whose correctness implies the correctness of the original program.

while (c) invariant ϕ {
B;

}

assert ϕ; // (base case)
havoc modset(B);
assume ϕ; // inductive hypothesis
if (c) {
B;
assert ϕ; // (step case)
assume false;

}

Figure 3.2.: The loop-cutting transformation summarises a loop using its invariant [BL05]

47

i = 0;
x = 1; y = 2; z = 3;
while (i < 10000)
candidate C0: i = 0;
candidate C1: i != 0;
candidate C2: 0 <= i;
candidate C3: 0 < i;
candidate C4: i < 10000;
candidate C5: i <= 10000;
candidate C6: x != y;

{
temp = x; x = y; y = z; z = temp;
i = i + 1;

}

C0
C1
C2
C3
C4
C5
C6

C0
C1
C2
C3
C4
C5
C6

C0
C1
C2
C3
C4
C5
C6

C0
C1
C2
C3
C4
C5
C6

refute
C1, C3

refute
C0, C6

refute
C4

returns
invariant

C2 ^ C5

fixpoint
no further
refutations

Initially Iteration 1 Iteration 2 Iteration 3

Figure 3.3.: An example program and Houdini run showing the candidates refuted at each
iteration until a fixpoint is reached. The example program is adapted from a
paper by Donaldson et al. [DHKR11].

3.1.2. Candidate-Based Invariant Generation using Houdini

Candidate-based invariant generation has two phases: guess and check. The guess phase
generates candidates for a given program. This yields a finite set of candidates, which
can be considered to be the raw material for the check phase. The check phase uses the
Houdini algorithm [FL01] to compute the unique, maximal conjunction of candidates that
is an inductive invariant (for a proof of this property see [FJL01]). In the best case this
is the entire set of candidates; in the worst case it is the empty set, corresponding to the
invariant true.

Guess Phase This phase generates a finite set of candidates for a given input program.
These can be generated from any source including static or dynamic methods. Importantly,
this phase can be aggressive, generating a large set of potential invariants: candidates
that turn out to be false cannot introduce unsoundness; they will simply be refuted by
Houdini. In Section 3.3, we give the methodology and design of rules we have implemented
for GPUVerify.

Check Phase This phase computes the maximal subset of candidates that collectively
form an inductive invariant, by successively removing candidates that cannot be proven
until a fixpoint is reached. A candidate may fail to be proven either because it is false
or because it is not inductive (corresponding to base or step case assertion failures in
Figure 3.2). For brevity, in both cases we refer to the candidate as false.

In this section we use the program in Figure 3.3, adapted from a paper by Donaldson

48

et al. [DHKR11], as a simple running example. The program repeatedly cycles the values
1, 2, 3 around the variables x, y, z. We assume the guess phase has given us the candidates
C0 through C6. Houdini must now compute the maximal inductive invariant from this set
of candidates.

Initially, Houdini tries to verify the program using the conjunction of all candidates as an
invariant. This is checked by generating the verification condition for the program [BL05]
and checking for its satisfiability using an underlying SMT solver (e.g. Z3 [dMB08] or
CVC4 [BCD+11]). If verification succeeds then the entire candidate set forms an inductive
invariant. Otherwise, the failed verification attempt identifies a subset of the candidates
that cannot be proven. These candidates are removed and verification using the remaining
candidates is attempted; again, if verification succeeds then the candidate set is inductive.
This process continues until a fixpoint is reached (in the worst case, the fixpoint is the
empty set).

In Figure 3.3 we show the set of candidates for each iteration of Houdini. Houdini is
unable to verify the program using the conjunction of all candidates because C1 and C3 are
false: they are not true at loop entry (base case). No further candidates can be removed
at this iteration since (i) all other candidates are true at loop entry and (ii) assuming the
candidates C0 and C1 is inconsistent so all candidates are vacuously true when checking
the step case. At the second iteration, the candidates C0 and C6 are refuted because they
are not preserved by the loop. To see why C6 is not preserved consider the state where
x = 1 and y = z = 2, which satisfies the assumption on loop entry but results in a state
that does not satisfy C6 after the loop executes. At the third iteration, the candidate C4

is refuted. This candidate could not be removed until C0 was removed since assuming C0

allows C4 to be preserved by the loop. This illustrates dependencies between candidates,
where refutation of a candidate is only possible after refutation of certain other candidates.
In the final iteration a fixpoint is reached: all remaining candidates collectively form an
inductive invariant and Houdini returns C2 ∧ C5.

The Houdini algorithm is sound and terminating. This is because each iteration of Hou-
dini only removes false candidates (soundness) and so the number of remaining candidates
is strictly monotonically decreasing with each iteration, until the fixpoint is reached (ter-
mination). We also argue that Houdini is in some sense predictable. Because Houdini only
considers conjunctions of candidates the maximum number of iterations is linear in the
number of candidates when considering a single procedure (catering for multiple proce-
dures requires a quadratic number of iterations in the worse case). This gives us an upper
bound on the number of SMT queries because the search space (the set of candidates)
is known upfront. Although each iteration results in an SMT query and (depending on

49

FRONTEND HOUDINI

Invariant
Generation

BACKEND

Boogie Verification
Engine

Parallel GPU Kernel

Pass / Fail / Timeout

Sequential
Program

Candidates

Section 3.3 Section 3.5

Kernel Transformation
+

Candidate Generation

Sequential
Program

with
Invariants

Figure 3.4.: The architecture of GPUVerify. The components responsible for invariant
generation are shaded.

the theories involved and the details of the query in question) the speed of an SMT query
can be unpredictable, this bound on the number of queries offers a significant degree of
predictability in practice.

3.1.3. Invariant Generation in GPUVerify

Figure 3.4 shows the architecture of GPUVerify. As discussed in Chapter 2, the key idea
behind GPUVerify is the translation of a parallel GPU kernel into a sequential program.
The kernel transformation (Section 2.3) applied by GPUVerify is sound, but incomplete:
i.e., errors reported by the tool may be spurious (false positives). These false positives
can arise from three sources: (i) abstract handling of floating-point operations, (ii) the
abstraction of shared state, or (iii) insufficiently strong loop invariants. In practice we find
that (iii) is by far the most common limitation. To combat this, GPUVerify uses candidate-
based invariant generation using Houdini. The frontend is responsible for kernel translation
and candidate generation using pre-defined rules designed for the domain of GPU kernels.
We discuss these rules in detail in Section 3.3. Houdini then takes the sequential program
with candidates and computes the strongest invariant, which is subsequently passed onto
the backend solver. We discuss methods for accelerating Houdini in Section 3.5.

3.2. Benchmarks

An assumption of candidate-based invariant generation is that the programs to be analysed
share similar characteristics. That is, the candidate generation rules should be generally
applicable. To develop our rules we conducted our study with respect to a set of 356

benchmarks, collected from nine sources:

• AMD Accelerated Parallel Processing SDK v2.6 [AMD] (53 OpenCL kernels)

50

• NVIDIA GPU Computing SDK v5.0 [NVI] (97 CUDA kernels); we also include 7
CUDA kernels from a previous version of the SDK (v2.0)

• Microsoft C++ AMP Sample Projects [Mic] (16 kernels, hand translated to CUDA)

• The gpgpu-sim benchmarks [BYF+09] (20 CUDA kernels)

• The Parboil v2.5 [SRS+12] (18 OpenCL kernels)

• The Rodinia suite v2.4 [CSLS09] (24 OpenCL kernels)

• The SHOC suite [DMM+10] (48 OpenCL kernels)

• The PolyBench/GPU suite [GGXS+12] (49 compiler-generated OpenCL kernels)

• Rightware Basemark CL v1.1 [Rig] (24 OpenCL kernels)

Each suite is publicly available except for Basemark CL which was provided to us under
an academic license. This collection covers all publicly available GPU benchmark suites
that we are aware of. The kernel counts above do not include 208 kernels that we manually
removed from our study: (i) 3 kernels cause GPUVerify to fault internally, (ii) 16 kernels
are trivially race-free as they are run by a single thread, (iii) 8 kernels use features that are
currently unsupported by GPUVerify, such as CUDA surfaces, (iv) 24 kernels are data-
dependent and require refinements of the GPUVerify verification method that cannot be
applied automatically [CDK+13] (we address this problem in Chapter 4), and finally (v)
157 kernels are loop-free and hence do not require invariant generation. We refer to the
whole benchmark suite as the LOOP set.

In Section 1.2, we distinguished between real and synthetic programs. An assumption of
the work in this chapter is that the kernels considered in our benchmark suite are real. We
have guarded against this by gathering benchmarks from a variety of sources. However, a
minority of the kernels, particularly in the SDKs, are somewhat synthetic. For example,
they demonstrate a language feature (e.g., kernels using function pointers in the CUDA
SDK) or repeatedly execute the same loop body for the purpose of performance timing
(e.g., the matrix transpose kernels in the CUDA SDK).

Tables 3.1 and 3.2 indicate the extent to which GPUVerify is confronted with loops when
analysing the LOOP set. GPUVerify performs full inlining before analysis (this is possible
in practice because recursion and function pointers are prohibited in OpenCL [Khr13b]
and rare in CUDA).2 In Table 3.2 we give the number of loops and depth of the deepest

2No kernels in our benchmarks use recursion although it is supported in CUDA 5.0 [NVI12a]. Two kernels,
FunctionPointers/Sobel, in the CUDA SDK use function pointers.

51

Table 3.1.: Number of loops of the kernels in our study
Number of loops 1 2 3 4 5 6 7+
Kernels 154 100 38 32 14 3 15

Table 3.2.: Loop nest depth of the kernels in our study
Max loop nest depth 1 2 3 4
Kernels 234 75 38 9

loop nest across the benchmark set after inlining has been performed. This shows that
the majority (71%) of kernels feature a single loop or a pair of loops, but that 15 kernels
exhibit a large number of loops (7 or more). The 1143-line heartwall kernel from the
Rodinia suite features 48 loops which are syntactically distinct (i.e., they do not arise as
a result of inlining). The majority of kernels do not exhibit nested loops (indicated by a
nesting depth of 1), however, more than a third of the kernels (34%) exhibit larger nesting
depths.

3.3. Candidate Generation Rules for GPU Kernels

We now turn to the candidate generation rules that we have designed for reasoning about
GPU kernels, based on the benchmarks of Section 3.2. We begin by reviewing the trans-
lation applied by GPUVerify, which introduces instrumentation variables that must be
accounted for by loop invariants: race instrumentation (Section 3.3.1), and uniformity
(Section 3.3.3). To illustrate this, we consider three patterns found in GPU kernels and
the form of loop invariants required for precise reasoning (Section 3.3.2). Finally we dis-
cuss our methodology (Section 3.3.4) for designing new rules, and the rules themselves
(Section 3.3.5).

3.3.1. Invariants for Handling Race Instrumentation

The translation applied by GPUVerify introduces instrumentation variables to cater for
race checking. Intuitively, the instrumentation variables track the read and write sets of
an arbitrary pair of distinct threads (introduced by the two-thread reduction). A race
error is reported if the intersection of the read and write sets is non-empty (for some
distinct pair of threads). Crucially, if an access occurs in a loop then the corresponding
instrumentation variables will be a member of the modset of the loop (Section 2.3.3).

52

Hence, under the loop-cutting transformation (Figure 3.2), the instrumentation variables
tracking accesses will be set arbitrarily when considering the step case and may result in
spurious race errors.

In the previous chapter (Section 2.3.3) we described two quantifier-free encodings for
race instrumentation: a non-deterministic set encoding [BCD+12] and a watchdog encod-
ing [BBC+14]. We review their behaviour by considering a simple racy kernel given in
Figure 3.5(a). In the code, tid denotes the id of a thread, v and w are thread-private
variables and A is an array in shared state.

(a) Racy kernel (b) Translation (c) Non-deterministic set (d) Watchdog
v = A[tid];

w = A[tid+1];

A[tid] = v + w;

LogRdA(tid$1);
ChkRdA(tid$2);
havoc(v$1, v$2);

LogRdA(tid$1+1);
//
//
//
ChkRdA(tid$2+1);
havoc(w$1, w$2);

LogWrA(tid$1);
ChkWrA(tid$2);

LogRdA(tid$1);
ChkRdA(tid$2);
havoc(v$1, v$2);

if (*) {
rdExistsA = true;
rdOffsetA = tid$1+1;

}
ChkRdA(tid$2+1);
havoc(w$1, w$2);

LogWrA(tid$1);
assert (rdExistsA
⇒ rdOffsetA != tid$2);

assert (wrExistsA
⇒ wrOffsetA != tid$2);

LogRdA(tid$1);
ChkRdA(tid$2);
havoc(v$1, v$2);

if (tid$1+1 == trOffset) {
rdExistsA = true;

}
ChkRdA(tid$2+1);
havoc(w$1, w$2);

LogWrA(tid$1);
assert (rdExistsA
⇒ trOffset != tid$2);

assert (wrExistsA
⇒ trOffset != tid$2);

Figure 3.5.: A racy kernel and its translation using race instrumentation

The kernel in (a) is racy because the read from A[tid+1] of one thread can conflict
with the write to A[tid] of another (e.g., thread 0 and thread 1). We highlight the racing
accesses.

The code in (b) shows the kernel after translation. We omit predication since every
statement is enabled. The translation has applied:

• Two-thread reduction: introduces a pair of arbitrary threads (s, t). Thread-private
variables (including tid) are duplicated into $1 and $2 versions corresponding to
the version of the variable for s and t, respectively.

• Adversarial shared state abstraction: shared-state is not modeled — i.e., reads from
A result in a non-deterministic assignment using havoc and writes to A become no-
ops.

• Access logging: each read or write access to A is translated into a pair of log and
check procedure calls. The threads are treated asymmetrically: the log procedure

53

(respectively check procedure) is called by the first thread s (respectively the second
thread t) of the two-thread reduction. This is sound because the two-thread reduc-
tion will consider all pairs of threads: i.e., if the pair (s, t) is considered then so will
(t, s).

The code in (b) highlights the conflicting log and check procedures. Suppose we used a
quantified encoding of the read and write sets. Then we would capture the read and write
sets of s as {s, s+ 1} and {s}, respectively; and, the read and write sets of t as {t, t+ 1}
and {t}, respectively. Since s + 1 = t is satisfiable (if s = t − 1) the read and write sets
conflict and a race error is reported.

In the code of (c) and (d) we inline these procedures using the quantifier-free non-
deterministic set and watchdog encodings, respectively.3 For clarity we have only inlined
the conflicting log and check procedures and left other calls unmodified. Under the non-
deterministic set encoding, the log procedure non-deterministically chooses whether to
track the read of s (by setting rdExistsA and updating rdOffsetA) or not (by leaving the
instrumentation variables unmodified). Under the watchdog encoding, the log procedure
tracks the read if it matches an arbitrary offset (the tracked offset, trOffset) by setting
rdExistsA. The check procedure for both encodings asserts that the write access of t does
not conflict with the access tracked in the instrumentation variables. We highlight the
assertion failure in both examples.

Now consider a loop that contains an access to A. In this case, the corresponding instru-
mentation variables of A will be in the modset of the instrumented loop and may cause
spurious race errors. For example, suppose the statements in Figure 3.5(a) were in a loop.
The instrumentation variables modified in Figure 3.5(c) or (d) would then be in the modset
of the instrumented loop. Thus, for precise reasoning, loop invariants must constrain these
instrumentation variables by capturing the access pattern of the loop, which summarises
the assignment of threads to elements of the array and constrains the instrumentation
variables.

3.3.2. Example Invariants for Access Patterns

To illustrate this, we consider three access patterns found in GPU kernels and the form of
loop invariants that suffice for precise reasoning. In this section, we will use the variables

3Our translation for the watchdog encoding (d) omits the use of the tracking variable, which is an opti-
misation. We use this variable to non-deterministically enable race checking at a barrier (Section 2.3.3).
Doing this allows the instrumentation variables to be set to false at a barrier by assuming they are false
(rather than assigning to them) and hence avoids unnecessarily adding these variables to the modset
of loops containing barriers.

54

//--gridDim=[1] --blockDim=[4]
#define N 4
__global__ void saxpy(float a, float *x, float *y) {

unsigned tid = threadIdx.x;

for (int i=0; i<N; i++) {
unsigned idx = (tid * N) + i;
y[idx] = a * x[idx] + y[idx];

}
}

(a) CUDA source code

50 3 72 4 61

T0 T1T0T0 T1 T1T0 T1

138 11 1510 12 149

T2 T3T2T2 T3 T3T2 T3

(b) Access pattern: each thread handles a
‘slice’ of N elements

Figure 3.6.: Saxpy kernel using slicing

rA and wA to refer to an arbitrary read and write offset of the array A, which correspond
to:

• rdOffsetA and wrOffsetA (when rdExistsA = true and wrExistsA = true, respec-
tively) under the non-deterministic set encoding; and

• trOffset (when rdExistsA = true and wrExistsA = true) under the watchdog
encoding.

Slicing Figure 3.6a gives a CUDA kernel that performs a parallel vector operation y⃗ =

αx⃗ + y⃗. For exposition purposes, we give a simplified kernel that is invoked by a single
block. Each thread in the block is assigned N elements of the vector computation. We
assume that the vectors x⃗ and y⃗ are of length N ·blockDim.x. Figure 3.6b gives the access
pattern when blockDim.x = 4. The kernel is data race-free since the array x is read-only
and each thread reads and writes to a contiguous ‘slice’ of the array y. We can capture
this pattern using the following invariants:

ry / N = tid
wy / N = tid

which use integer division to express the assignment of elements to threads. An alternative
is to give lower and upper bounds to the accesses:

tid ·N ≤ ry < (tid+ 1) ·N
tid ·N ≤ wy < (tid+ 1) ·N

55

//--gridDim=[1] --blockDim=[4]
#define N 4
__global__ void saxpy(float a, float *x, float *y) {

unsigned tid = threadIdx.x;

for (int i=0; i<N; i++) {
unsigned idx = (i * N) + tid;
y[idx] = a * x[idx] + y[idx];

}
}

(a) CUDA source code

50 3 72 4 61

T1 T2T3T2 T1 T3T0 T0

138 11 1510 12 149

T1 T2T3T2 T1 T3T0 T0

(b) Access pattern: each thread handles
strided elements at intervals of N

Figure 3.7.: Saxpy kernel using striding

Striding Figure 3.7a gives a CUDA kernel that performs the same parallel vector opera-
tion y⃗ = αx⃗+ y⃗ as in the previous section, but using a different access pattern. Figure 3.7b
(for blockDim.x = 4) shows that the assignment of threads to elements is strided. Each
thread t handles elements at intervals of N . For example, thread 0 handles elements 0, 4,
8 and 12. We can capture this pattern using the following invariants:

ry % N = tid
wy % N = tid

which use modulo arithmetic to express the striding assignment of elements to threads.

Tiling We now turn to a more realistic example that exhibits both slicing and striding
patterns. Figure 3.8a gives a CUDA kernel taken from the CUDA SDK [NVI] that performs
a parallel matrix transpose. The kernel reads from an input matrix idata of dimension
width by height and writes to an output matrix odata. The matrices are stored in
row-major order so an element Aij of a matrix A is stored in a linear array at offset
(i + width · j). The kernel is invoked with a two-dimensional grid of two-dimensional
blocks. Each block of threads is assigned a square tile of dimension TILE_DIM of the input
and output matrices. Individual threads within a block stride along their assigned tile in
the loop by BLOCK_ROWS steps. At each iteration of the loop, each block of threads copies
TILE_DIM by BLOCK_ROWS elements from idata to odata. For example, if the matrix
dimension is 8× 8, with TILE_DIM 4 and BLOCK_ROWS 2 then the kernel is invoked with a
2 × 2 grid of blocks of 4 × 2 threads. Each of the blocks is assigned a tile of dimension
4×4 elements. The read and write assignment of block (1, 0) is shown in Figure 3.8b. For
example, thread (1, 1) of block (1, 0) assigns odata5,1 from idata1,5 and odata3,1 from
idata1,3 when i = 0 and 1, respectively.

56

//--gridDim=[2,2] --blockDim=[4,2]
#define TILE_DIM 4
#define BLOCK_ROWS 2
__global__ void transpose(

float *odata, float *idata, int width, int height) {
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;
int index_out = yIndex + height * xIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
odata[index_out+i] = idata[index_in+i*width];

}
}

(a) CUDA source code

1

0

2

7

4

3

5

6

50 3 72 4 61

T31T30 T31T30

T11

T21T20

T10

T01

T20

T30

T10

T21

T31

T31

T00

T21T11

T10

T20

T30

T00

T01

T01

T11

T00

T21

T01

T10

T00

T11

T20

i = 0

i = 0 i = 1

i = 1

Block (1,0) reads
from idata

Block (1,0) writes
to odata

(b) Reads of idata and writes of odata of
block (1, 0) for iterations i = 0 and 1.
N.B., the reads and writes of the kernel
are not in-place over the same matrix.

Figure 3.8.: Matrix transpose kernel (from the CUDA SDK)

The kernel is data race-free since the input idata is read-only and distinct threads write
to distinct offsets of the output odata. We can capture this pattern using an invariant that
expresses an arbitrary write wodata in terms of thread and block identifiers. Intuitively,
this is useful because for any two distinct threads it must be the case that (at least) one of
threadIdx.x, threadIdx.y, blockIdx.x and blockIdx.y are distinct. In the following,
we write H and D to denote height and TILE_DIM, respectively; and, write tid.{x, y} and
bid.{x, y} to refer to the two-dimensional components of the thread and block identifier,
respectively.

((wodata / H) % D) = tid.x ∧
((wodata % H) % D) = tid.y ∧
((wodata / H) / D) = bid.x ∧
((wodata % H) / D) = bid.y

This invariant is trivially satisfied on loop entry since no writes have occurred at this
point. To see that it is maintained by the loop consider the form of the write wodata.
The access will be of the form index_out + i, where i is some multiple of BLOCK_ROWS.

57

Rewriting, by expanding variable definitions, gives us:

wodata = (tid.x ·H) + tid.y + (bid.x ·H ·D) + (bid.y ·D) + i

which shows that the use of division and modulo (as used in slicing and striding, respec-
tively) allows the invariant to relate wodata to the components of the thread and block
identifiers. For example, in the first conjunct, wodata is divided through by H to leave
tid.x+ (bid.x ·D) so that subsequent modding by D yields tid.x.

3.3.3. Invariants for Handling Uniformity

As discussed in Section 2.3.1, the kernel translation performed by GPUVerify uses pred-
ication to deal with thread divergent control-flow [BCD+12]. After predication, each
statement has a thread-private variable (a predicate) that determines whether a thread is
enabled or disabled. If all threads are enabled or disabled at a given statement then we say
the control-flow is uniform (at this execution point). Barrier divergence occurs if a barrier
is reached under non-uniform control flow. Therefore, for precise reasoning about barrier
divergence we must reason about uniformity in loop invariants. Figure 3.9 (deliberately
contrived for the purpose of illustration) gives an example that is barrier divergence-free.

(a) Original kernel (b) After predication (c) With uniformity analysis
// n is a formal parameter
// i, j are thread-private variables
i = 0;
if (tid < n) {
j = 1;

} else {
j = 2;

}
while (i < n) {

barrier();
j = j + 3;
i = i + 4;

}

true⇒ i$1 = 0;
true⇒ i$2 = 0;
true⇒ p$1 = tid$1 < n;
true⇒ p$2 = tid$2 < n;
p$1 ⇒ j$1 = 1;
p$2 ⇒ j$2 = 1;
!p$1⇒ j$1 = 2;
!p$2⇒ j$2 = 2;
true⇒ q$1 = i$1 < n;
true⇒ q$2 = i$2 < n;
while (q$1 || q$2) {

barrier(q$1, q$2);
q$1⇒ j$1 = j$1 + 3;
q$2⇒ j$2 = j$2 + 3;
q$1⇒ i$1 = i$1 + 4;
q$2⇒ i$2 = i$2 + 4;
q$1⇒ q$1 = i$1 < n;
q$2⇒ q$2 = i$2 < n;

}

i = 0;

p$1 = tid$1 < n;
p$2 = tid$2 < n;
p$1 ⇒ j$1 = 1;
p$2 ⇒ j$2 = 1;
!p$1⇒ j$1 = 2;
!p$2⇒ j$2 = 2;

while (i < n) {
barrier(true, true);
j$1 = j$1 + 3;
j$2 = j$2 + 3;
i = i + 4;

}

Figure 3.9.: Predication and uniformity analysis example

The code in (a) shows a simple kernel with a thread-sensitive conditional and loop.

58

Applying predication with the two-thread reduction yields the code in (b) where p and q
are predicates giving the enabledness condition for the condition and loop, respectively.
Let us use the variable en to refer to the predicate at a given execution point. Then
execution is uniform at a given statement if en$1 = en$2. Given an expression e, we
write uniform(e) to denote the condition e$1 = e$2. For example, in (b), the execution of
the loop is uniform. This is important because the barrier requires uniform control-flow
(i.e., the barrier will assert q$1 = q$2). Thread-private variables can also be uniform if
they always take the same values, for all threads. For example, the loop index variable i
is uniform, but the variable j is not. Hence, two loop invariants are required for precise
reasoning for this example: uniform(en) and uniform(i).

In prior work [BBC+14], we introduced uniformity analysis to recover uniformity infor-
mation statically. This is a taint analysis at the level of the control-flow graph using the
program dependence graph [FOW87]. The analysis computes the transitive closure of ba-
sic blocks or variables that are control- or data-dependent on thread-sensitive identifiers.
Initially, every basic block and thread-private variable is marked as uniform, except for
thread identifiers which are non-uniform. Then, (i) a basic block is marked as non-uniform
if it is control-dependent on a condition containing a non-uniform variable and (ii) a vari-
able is marked as non-uniform if it is assigned an expression that contains a non-uniform
variable. The analysis iterates until it reaches a fixpoint. Following this analysis, predica-
tion is only required for non-uniform blocks and only non-uniform thread-private variables
need be duplicated under the two-thread reduction. For example, uniformity will recover
the uniformity of q and i in (b) yielding the code in (c). Uniformity analysis reduces the
burden on invariant generation and leads to smaller SMT formulas due to the reduction
in duplicated variables.

However, because uniformity analysis is conservative there are still kernels that re-
quire invariants to re-capture uniformity. Consider the following kernel, which is barrier
divergence-free.
// C is an integer constant
for (i=threadIdx.x; i<C*blockDim.x; i+=blockDim.x) {
__syncthreads();

}

The loop index variable i is non-uniform, but the loop predicate is uniform because every
thread will execute the loop C times. Hence, we require the invariant uniform(en).

59

3.3.4. Methodology

Obtaining kernel parameters A GPU kernel is invoked with respect to a thread
configuration that specifies how threads are arranged in a multi-dimensional grid of blocks.
The invocation also gives the set of input values: the initial values of the kernel’s formal
parameters. Most kernels are not designed to be correct for arbitrary thread configurations
and input values; they make implicit assumptions about these preconditions. For example,
the matrix transpose kernel of Figure 3.8a requires, amongst several other preconditions,
that width = gridDim.x · TILE_DIM. Unfortunately these preconditions are rarely fully
documented, and any documentation that does exist is provided as informal source code
comments.4

We used the following process to pragmatically choose suitable thread configurations
and input value preconditions. For each kernel:

• We ran the application in which the kernel was embedded using dynamic library
interception of CUDA and OpenCL calls. For this purpose we developed a shim
library for CUDA applications5 and used KernelInterceptor [BDW14] for OpenCL
applications. Intercepting these calls gave us observations of invocation parameters
for the kernel.

• We then ran GPUVerify on the kernel in bug-finding mode assuming the observed
thread configuration but with unconstrained input parameters. The bug-finding
mode of GPUVerify involves loop unrolling for fixed depth 2 to avoid the need
to generate loop invariants and eliminate the possibility of spurious errors due to
insufficiently strong loop invariants (spurious errors due to the abstract handling
of floating-point operations and the abstraction of shared state are still possible).
If GPUVerify reported a possible data race then we determined whether the cause
was due to an unconstrained integer input parameter. In this case, we added the
constraint observed at runtime and repeated until either GPUVerify was satisfied
or we had constrained all integer parameters. We only add integer preconditions
because GPUVerify handles other data types, such as floating-point, and shared
state abstractly. It is rare for the data race-freedom of a kernel to depend on the
values of non-integer preconditions.

This provided a pragmatic mechanism for obtaining a suitable, but not overly con-
4CUDA supports kernel-level assertions, but we have rarely seen their use in the kernels we have examined

(One kernel, simpleAssert, in the CUDA SDK uses a kernel-level assertion, but only for the purposes
of demonstrating an assertion failure).

5https://github.com/nchong/cudahook

60

https://github.com/nchong/cudahook

strained, precondition with respect to which the kernel could be verified. For example, in
the matrix transpose kernel, this led to preconditions for width and height that in con-
junction with the thread configuration satisfy the implicit constraint above. This method
does not discover most general implicit assumptions, but pragmatically works around them
via specific values that are used in practice.6

Developing rules After determining preconditions for the LOOP set we applied GPU-
Verify and partitioned the kernels into two sets according to whether they could or could
not be automatically verified with the current loop invariant generation capabilities of the
tool. Beginning with a set of five rules, defined in prior work [BCD+12], we iteratively
developed further rules using the following process:

• We picked a number of kernels from the not verified set.

• We manually examined the kernels and manually determined a minimal set of in-
variants that enabled them to be verified. Each kernel was updated to include these
annotations as user-supplied invariants.

• We then identified patterns in these invariants and reasoned whether they could
be extrapolated. In particular, we were guided by whether we believed the pattern
would be generally applicable (we evaluate the precision of our rules in Section 3.6.2).
If so, then we implemented a rule to detect the pattern and removed any user-
supplied invariants that were subsumed by the rule.

• Finally, we re-ran GPUVerify on the entire not verified set, moving new kernels that
verified into the verified set.

3.3.5. Rules

We now describe the rules that we have developed. Our rules fall into the following
categories: (i) patterns over accesses, which summarise read and write accesses issued by
the execution of a loop, (ii) judgements about whether reads or writes can be issued by
the execution of the loop, (iii) patterns over loop guard variables that summarise ranges
and values that the loop guard variable can take, (iv) guesses over the uniformity of

6 After the completion of our study we reviewed the number of preconditions inserted using this method-
ology. We found that 51% of kernels required preconditions and on average each kernel required 2
(standard deviation of 1.2) preconditions. The largest number of preconditions required for a single
kernel was 8 (the FunctionPointers/SobelShared kernel in the CUDA SDK).

61

predicates and variables, and (v) patterns over variables, in particular, recognising power-
of-two values. For each rule we give the essence of the rule and a motivating CUDA kernel
fragment. In the following, let A be an array in shared memory, i be a loop index variable,
C be an integer constant value and e be an expression. We write w to refer to an arbitrary
write access to A.

r0. accessBreak Given an access involving thread or block components (i.e., threadIdx
or blockIdx in CUDA, and get_local_id() or get_group_id() in OpenCL), such as the
tiling example in Section 3.3.2, this rule attempts to extract different components of the
thread and block identifiers using rewriting. Intuitively, this is useful because for any two
distinct threads it must be the case that (at least) one of the thread or block components
is distinct. The rule begins by fully expanding the access so that every thread or block
component is a separate expression. For example, the matrix transpose access from the
tiling example, after expanding variable definitions and distributing multiplication is:

w = (tid.x ·H) + tid.y + (bid.x ·H ·D) + (bid.y ·D) + i

where we use H and D to denote height and TILE_DIM, respectively; and i is the variant
of the loop and will be ignored by the rule since it does not contain a thread or block
component. Then, each component is extracted using subtraction and division. This
results in four candidates:

tid.x = (w/H)− (tid.y/H)− (bid.x ·D)− (bid.y ·D/H)

tid.y = w − tid.x− (bid.x ·H ·D)− (bid.y ·D)

bid.x = (w/H/D)− (tid.x/D)− (tid.y/H/D)− (bid.y/H)

bid.y = (w/D)− (tid.x ·H/D)− (tid.y/D)− (bid.x ·H)

r1. accessSlice This rule identifies when a thread is assigned a contiguous range of an
array, such as the slicing example in Section 3.3.2, due to an access of the form (C ·tid)+i,
where i is the variant of the loop. The rule generates two candidates that bound the range
of the access. In the following loop, the rule will generate the candidates C · tid ≤ w and
w < C · (tid+ 1).
for (i=0; i<C; i++) {
A[C*threadIdx.x+i] = e;

}

62

r2. accessStride This rule identifies stride patterns and strength reduction loops, such
as the stride example in Section 3.3.2. In the following loop, the rule will generate the
candidate w % C = tid.
for (i=0; i<4; i++) {
A[i*C+threadIdx.x] = e;

}

r3. accessSliceBlockLower and r4. accessSliceBlockUpper These rules are anal-
ogous to the accessSlice rule except they generate candidates when the access expression
uses block indexes. In the following loop, the rules will generate the candidates C ·bid ≤ w

and w < C · (bid+ 1), respectively.
for (i=threadIdx.x; i<C; i+=blockDim.x) {
A[(blockIdx.x*C)+i] = e;

}

r5. noAccessConditionalLoop This rule captures loops that are within a thread-
dependent conditional, such as threadIdx.x < C. In this case, threads for which the
conditional is false will not execute the loop and will not issue accesses. In the follow-
ing loop, where the expression e contains a thread identifier, the rule will generate the
candidates ¬e⇒ ¬rdExistsA and ¬e⇒ ¬wrExistsA.
// e contains a thread identifier
if (e) {

for (...) {
...

}
}

r6. guardMinusInitialIsUniform This rule guesses that if a loop contains a barrier
and the guard variable is non-uniform then the guard minus its initial value is uniform.
This is based on the intuition that barrier divergence will occur otherwise. In the following
loop, the rule will generate the candidate uniform(i− e).
for (i=e; ...) {
...
__syncthreads();

}

r7. guardNonNeg This rule guesses that every guard variable is non-negative. In the
following loop, the rule will generate the candidate 0 ≤ i.

63

for (i=...) {
...

}

r8. guardBound This rule guesses that the initial value of a guard variable bounds
the range of the guard. In the following loop, the rule will generate candidates e ≤ i and
i ≤ e.
for (i=e; ...) {
...

}

r9. guardStride This rule is analogous to the accessStride rule except for guard vari-
ables. In the following loop, the rule will generate the candidate i % C = tid.
for (i=0; i<4*C; i+=C) {
...

}

r10. loopPredicateUniform This rule guesses that if a loop contains a barrier and
the guard variable is non-uniform then the loop predicate is uniformly enabled. This is
based on the intuition that barrier divergence will occur otherwise. In the following loop,
the rule will generate the candidate uniform(en).
for (i=threadIdx.x; i<C*blockDim.x; i+=blockDim.x) {
...
__syncthreads();

}

r11. noRead and r12. noWrite These rules guess that if a barrier appears within
a loop and the array A is read from or written to by the loop body then no accesses to
A can be in-flight at the loop head. This is based on the intuition that the barrier will
clear the read and write sets. In the following loop, the rules will generate the candidates
¬rdExistsA and ¬wrExistsA, respectively.
for (...) {
... = A[e];
...
A[e] = ...;
__syncthreads();

}

64

r13. varPow2 and r14. varPow2NotZero These rules identify variables that are
assigned power-of-two values. This is based on the intuition that power-of-two values are
often used as bitmasks and in tree reductions and prefix sums. In the following loop, the
rules will generate the candidates (i bitwise_and (i−1)) = 0 and i ̸= 0, respectively, where
we use the common bitwise test for an integer power-of-two value [War12].
for (i = C; i>0; i>>=1) {
...

}

r15. varUniform This rule is concerned with recovering uniformity for variables. In
the following loop, the rule will generate the candidate en$1 ∧ en$2 ⇒ uniform(i).
for (i=threadIdx.x/blockDim.x; i<C; i++) {
...
__syncthreads();

}

r16. varRelationalPow2 This rule identifies possible pairs of power-of-two variables
such than one is incrementing and the other is decrementing and guesses a lock-step rela-
tion between them. We frequently see this pattern in prefix sum implementations [CDK14].
For the following loop, the rule generates candidates for a range of power-of-two values:
ij = 1, ij = 2, ij = 4, · · · , ij = 215.
j = 1;
for (i=C; i>0; i>>=1) {
...
j <<= 1;

}

Correspondence to Prior Work In prior work [BCD+12, sec. 4.3] we gave five rules
for invariant generation. These correspond to the following rules in this chapter:

• Rules “access at thread id plus offset”, “access at thread id plus strided offset” and
“access at thread id plus strided offset, with strength reduction” are subsumed by
rule r2 (accessStride).

• The rule “access contiguous range” is subsumed by rule r1 (accessSlice).

• The rule “variable is zero or power of two” is subsumed by rules r13 and r14 (varPow2
and varPow2NotZero).

65

3.4. Evolution of Precision and Performance

Starting with a configuration of GPUVerify that enabled user-supplied invariants but dis-
abled all candidate generation rules, we evaluated the effect on precision and performance
by running further configurations that allowed successively more rules to be used for can-
didate generation. By enabling rules in the same order that we developed them, this
experiment mimics the evolution of GPUVerify’s precision and performance. For each
configuration, we measured precision as the number of kernels that verify using only the
rules enabled by the configuration and performance as the time to process the LOOP
set, including any timeouts. We ran this experiment with a timeout of 10 minutes. Our
hypothesis was that our rules would enable a large number of kernels to verify, but at the
cost of performance.

Figure 3.10 plots the development of our rules on the x-axis. Each successive point
along the x-axis allows successively more rules to be used for candidate generation. We
order the rules along the x-axis in the approximate order that the rules were designed and
implemented in GPUVerify.7 We give two plots for (a) precision and (b) performance.
As we will show in our experimental evaluation (Experiment F0, Section 3.6), the LOOP
set contains trivial and non-trivial kernels, where a trivial kernel is defined as a kernel
that does not require invariant generation to verify (i.e., the invariant true suffices for
each loop). In practice, GPUVerify does not know upfront whether a kernel is trivial or
not. However, since we have found that invariant generation only negatively impacts trivial
kernels, we have separated these sets in the graphs. For trivial kernels we see that the rules
have a detrimental effect for precision, since some kernels now timeout due to unnecessary
candidates, and also in performance: a 7.8× slowdown. These timeouts account for over
half of this slowdown since we include these times in the plots of performance. For non-
trivial kernels, the precision results begin (when all rules are disabled) at 16 kernels due
to user-supplied invariants. We see the rules have a positive effect for precision allowing
122 further kernels to verify but at a cost of a 1.5× slowdown; although, not all rules
cause slowdown (e.g., the introduction of rules r13 and r14). Considering both sets in
conjunction the precision increases by 116 kernels (accounting for 6 trivial kernels that
time out when enabling all rules) but at a cost of a 2× slowdown (from 218 minutes to
449 minutes for processing the whole LOOP set). Motivated by these slowdowns, we now
turn to the problem of accelerating Houdini.

7We are only able to give an approximate ordering due to the development of GPUVerify and the sub-
suming of rules (see Correspondence to Earlier Work above).

66

∅
r1

1,
r1

2
r1

0,
r1

5 r2 r1 r9

r1
3,
r1

4 r7 r6

r3
, r

4 r0 r1
6 r8 r5

0

40

60

80

100

120

16

138
N

um
be

r
of

ke
rn

el
s

ve
ri

fie
d Trivial

Non-Trivial

(a) Impact on precision as successively more rules are enabled

∅
r1

1,
r1

2
r1

0,
r1

5 r2 r1 r9

r1
3,
r1

4 r7 r6

r3
, r

4 r0 r1
6 r8 r5

0

5000

15000

1022

8029

12102

18949

To
ta

lt
im

e
fo

r
ve

ri
fic

at
io

n
(s

ec
on

ds
)

Trivial

Non-Trivial

(b) Impact on performance as successively more rules are enabled

Figure 3.10.: The evolution of (a) precision and (b) performance of GPUVerify as new rules
were developed. Each successive point along the x-axis allows successively
more rules to be used for candidate generation.

67

3.5. Accelerating Houdini using Under-Approximation

The performance of Houdini is the time it takes to return the unique, maximal conjunction
from the set of candidates. Since this invariant is computed by iteratively removing false
candidates until a fixpoint is reached this performance is critically dependent on (i) the
number of false candidates and (ii) the underlying SMT solver’s ability to refute false can-
didates. As Figure 3.10 shows, aggressively guessing a larger set of candidates was useful
for precision but detrimental to performance. In this section we give methods to accelerate
the performance of Houdini using under-approximating techniques and parallelisation.

First, we review some definitions. We say that a program S is correct if every execution
of S is free from assertion failures. Note that this defines partial correctness because we do
not require termination. Informally, we say that the program S over-approximates T (or,
equivalently that T under-approximates S) if S has more execution behaviours than T .
More formally, S over-approximates T if the correctness of S implies the correctness of
T . The converse does not hold: the correctness of T does not imply the correctness of S.
Intuitively, we can think of this as saying that the under-approximation T can fail in
the same or fewer ways than S. The loop-cutting transformation (Figure 3.2) yields an
over-approximation S of the original program T since the correctness of S implies the
correctness of T .

3.5.1. Exploiting Under-Approximation

Our key observation is that if a candidate is refuted by an under-approximation T of a
program S then the candidate is also false with respect to the original program S. That
is, a refutation from an under-approximating analysis can be trusted. The converse does
not hold; a candidate that is not refuted by the under-approximating analysis may or may
not be a true invariant. This suggests the following strategy: run an under-approximating
analysis either upfront or in parallel with the standard Houdini algorithm. Any refutations
from the under-approximating analysis can be safely shared with the standard Houdini
algorithm. This is potentially helpful because the under-approximating analysis may be
able to cheaply refute false candidates that the standard Houdini algorithm struggles
with. In other words, adding an under-approximating analysis may enable complementary
refutation of false candidates. We emphasise that the standard Houdini algorithm remains
ultimately responsible for computing the maximal subset of the candidates (Section 3.1.2),
but that an under-approximating analysis may accelerate the process by refuting a false
candidate more quickly. Additionally, different under-approximating analyses may be
arbitrarily combined since their refutation performance may also be complementary. We

68

T (initial program)

S (loop-cut program)

SBASE SSTEP

LU(k) DYN

a over-approximates b

a

b

Figure 3.11.: Given an initial program T , Houdini operates on the loop-cut over-
approximation S. We consider four under-approximating refutation en-
gines: bounded loop unrolling of depth k (LU(k)), only checking base
cases (SBASE), only checking step cases (SSTEP), and dynamic analy-
sis (DYN).

now discuss four under-approximating analyses that we will evaluate in our empirical study
(Section 3.6). We refer to each under-approximating analysis used to accelerate Houdini
as a refutation engine. In Section 3.5.2 we consider how to combine refutation engines for
parallel acceleration of Houdini.

In the following, let T be the initial program and S be over-approximation of T following
loop-cutting (see Figure 3.2). Since Houdini operates over the loop-cut program S, we are
free to use under-approximations of S or under-approximations of the initial program T

for accelerating refutations. Figure 3.11 summarises four under-approximations that we
now consider.

Bounded Loop Unrolling, LU(k) Loop unrolling a program for a given depth k

yields a loop-free program where only the first k iterations of each loop are considered.
Figure 3.12 shows the transformation of a loop after loop unrolling with k = 2. The
loop-free fragment models k iterations of the loop. The resulting program is an under-
approximation because it does not consider behaviours that require further loop iterations.
The assume false statement means that any execution that would continue past k iter-
ations is infeasible; it will not be considered [BL05]. Hence bounded loop unrolling is an
under-approximation of the initial program T .

Splitting Loop Checking, SBASE and SSTEP As discussed in the introduction,
an invariant for a loop must be established inductively. Figure 3.2 shows the loop-cutting

69

while (c) invariant ϕ {
B;

}

if (c) {
assert ϕ;
B;
if (c) {
assert ϕ;
B;
if (c) {
assume false;

}
}

}

Figure 3.12.: Loop unrolling of the loop on the left for k = 2 depth yields the loop-free
program on the right

SBASE SSTEP
assert ϕ; // (base case)
havoc modset(B);
assume ϕ;
if (c) {
B;
// step case omitted
assume false;

}

// base case omitted
havoc modset(B);
assume ϕ;
if (c) {
B;
assert ϕ; // (step case)
assume false;

}

Figure 3.13.: Splitting the loop checking for a loop-cut program S yields two under-
approximations, SBASE and SSTEP

transformation of the program T to the loop-free program S. It shows that the invariant
must hold on loop entry (base case) and be maintained by the loop (step case). Omitting
either of these assertions yields an under-approximation because the resulting program can
fail in fewer ways than the original. This gives us two under-approximations of S: keeping
only the base case (SBASE) or keeping only the step case (SSTEP). We also think of
this as splitting the program S into two subprograms, Figure 3.13, where the correctness
of both subprograms implies the correctness of S. Our intuition is that refuting candidates
in each subprogram separately may be faster than dealing with the program as a whole.

Dynamic Analysis, DYN Dynamic analysis through running the program is a classic
under-approximating analysis since each execution explores a real behaviour of the pro-
gram. Unlike the other under-approximations we consider, dynamic analysis does not op-
erate via a program transformation; instead, statements of the original program are simply
interpreted. Similar to loop unrolling, dynamic analysis cannot refute candidates that are
falsified due to being non-inductive. This is because they are both under-approximations
of T .

70

For this purpose we developed our own Boogie interpreter. The Boogaloo tool [PFW13]
is an existing tool that can interpret Boogie, however it does not support bit-vectors and
building our own interpreter allowed us to exploit domain-specific knowledge related to
the kernel transformation of GPUVerify. Particular challenges that we faced were (i) in-
stantiating thread and group identifiers, as well as under-constrained kernel preconditions
with interesting values likely to lead to refutation of candidates, (ii) evaluating candidate
with respect to very large cross-products of values, and (iii) avoiding getting lost executing
loops with very large static bounds, without refuting any candidates in the process. To
resolve the latter challenge we designed various heuristics to enable us to stop dynamic
analysis after exploring a certain loop depth, instruction count or number of loop iterations
with no further refutations.

3.5.2. Parallel Refutation Sharing

Our final observation for accelerating Houdini is that multiple refutation engines can be
run in parallel in a synchronisation-free manner. Parallel refutation sharing works by
exchanging refutations between multiple refutation engines and the standard Houdini al-
gorithm. Each refutation engine updates a shared pool of refutations that is read by
Houdini at each iteration. We note this exchange process can be asynchronous because
(i) Houdini guarantees that the number of remaining candidates strictly monotonically
decreases with iteration and (ii) every refutation from an under-approximating refuta-
tion engine may be trusted. The exchange may race against refutation updates and miss
picking up refutations, but the race cannot affect the soundness of the standard Houdini
algorithm. In particular, invariant generation must only terminate when Houdini ter-
minates; a refutation engine can terminate earlier, but Houdini is critical for enforcing
soundness.

Parallel refutation sharing allows us to also consider running multiple Houdini instances
in parallel. For example, multiple instances each using a different underlying SMT solver
or configured with different option parameters. This may be advantageous due to the large
configuration space offered by modern SMT solvers. In this case, invariant generation can
terminate when any Houdini instance terminates.

3.6. Experimental Evaluation

We now evaluate the effectiveness of the techniques introduced in this chapter. The key
questions that we answer:

71

• Precision: to what extent do the rules we have designed increase the set of kernels
that GPUVerify can automatically verify? This has already been coarsely addressed
by the evolution experiments summarised in Figure 3.10. So, in this section, we will
quantify the dependencies and precision provided by different rules.

• Performance: how much speedup can be attained using refutation engines?

Experimental Setup Experiments were conducted on a compute cluster using 12-core
nodes with Intel Xeon X5640 cores at 2.6 GHz with 16 GB RAM running RedHat Linux
6.4 using CVC4 v1.4-prerelease (29-01-2014). Times reported are averages over three runs.

Experiments are labelled Fn, Pn or An to distinguish between experiments designed to
answer fundamental, precision or acceleration questions. We refer to our benchmark suite
of 356 kernels, detailed in Section 3.2, as the LOOP set.

3.6.1. Potential for Precision and Performance Improvement

We ran the following experiments because they are fundamental for justifying the work in
this chapter.

• Experiment F0 establishes whether invariant generation is critical for precise rea-
soning in our domain of interest. We measured how many kernels trivially verify
when invariant generation is disabled. Our hypothesis was that the majority of ker-
nels do require invariant generation for precise reasoning, justifying the design of
custom rules.

• Experiment F1 establishes whether invariant generation is a significant bottleneck
in the verification process cost of verification. It quantifies how much processing
time is consumed by invariant generation in GPUVerify. Our hypothesis was that
invariant generation is a significant bottleneck, justifying the design of acceleration
techniques.

Experiment F0 We ran GPUVerify over the LOOP set with both user-supplied in-
variants and invariant generation disabled and noted whether a kernel verified or not.
Note this experiment differs from the one in Section 3.4 because user-supplied invariants
are disabled. If a kernel verified without the aid of manually or automatically generated
invariants then we classify the kernel as trivial from an invariant generation perspective;
otherwise, invariant generation is critical for precise reasoning about the kernel. This iden-
tified that invariant generation is critical for 232 out of 356 (65%) kernels; the majority of

72

the LOOP set. The remaining 124 kernels do not require invariant generation. Kernels in
this set have loops that are irrelevant for data race-freedom checking, such as computing
a thread-private value or only performing reads from shared state. Invariant generation
can only slow down verification time for these kernels. In practice, GPUVerify does not
know upfront whether a kernel is trivial or not: every kernel incurs the cost of invariant
generation, and it is important that advanced invariant generation methods for non-trivial
kernels do not adversely affect verification for kernels for which invariant generation is not
actually necessary.

Experiment F1 To evaluate the value of accelerating Houdini we ran GPUVerify over
the LOOP set and measured the time spent in each of the (i) frontend (including candidate
generation), (ii) Houdini, and (iii) verification stages (Figure 3.4). After removing results
for 26 kernels that timed-out after 10 minutes (leaving 330 kernels), we found that the
total time was 12043 seconds and each stage of GPUVerify took (i) 373 seconds for the
frontend, (ii) 10075 seconds for Houdini and (iii) 1595 seconds for verification, respectively.
That is, Houdini consumed 84% of the total processing time of GPUVerify, a significant
proportion of the total verification cost. The theoretical maximum speedup we can achieve
from acceleration of Houdini across our benchmark set is thus 6×, if it were possible to
completely eliminate the overhead associated with the Houdini stage.

3.6.2. Evaluating Precision

We ran the following experiments to determine the precision of the rules we have designed.
All experiments in this section (i) included our user-supplied invariants and (ii) used a
large timeout of 30 minutes. We chose these parameters because we are interested in the
precision of the invariants afforded by our rules, regardless of performance. Using these
parameters allowed our precision experiments to explore more kernels and present a larger
evaluation: 10 kernels timed-out; results in this section thus report over 346 kernels.

• Experiment P0 measures the applicability of our rules. It quantifies how many
candidates, invariants and refutations were generated by each rule. Our hypothesis
was that the rules we had designed would be general-purpose, with each rule yielding
invariants for a significant number of benchmarks.

• Experiment P1 measures how often each rule was essential for verifying a kernel.
It quantifies how many kernels cannot be verified if a given rule is disabled. Each
rule was devised in response to at least one kernel and with generality in mind, so

73

our hypothesis was that each rule would prove essential for a significant number of
kernels.

• Experiment P2 measures how often pairs of rules influence each other. It quantifies
how often two rules generate invariants that rely on each other to be inductive. As
we largely devised rules in isolation from one another, our hypothesis was that there
would be few dependencies between rules.

Experiment P0 We ran GPUVerify over the LOOP set and (i) counted how many
candidates were generated for each rule, and also, (ii) determined the number of candi-
dates that were true invariants or refutations. The results are summarised in Table 3.3.
The sum of the number of invariants and the number of refutations is always equal to
the number of candidates generated by the rule. The hit-rate of a rule is the percentage
of candidates that were true invariants. This shows that only one rule r1 (accessSlice)
generated true invariants all of the time (100% hit-rate). We did not expect to find a
large number of rules with 100% hit-rate since we designed our rules to aggressively guess
candidates. Conversely, the hit-rate reveals that two rules r15 and r16 (varUniform and
varRelationalPow2) rarely speculate true invariants. In the case of r16 this is because
the rule generates 15 mutually exclusive candidates, where at most one candidate can
be true. This holds similarly for r8 (guardBound) which generates 2 mutually exclusive
candidates. This indicates that these rules could be refined to fire only under more spe-
cific conditions. Table 3.4 gives measures of central tendency for the distribution of the
candidates, invariants and refutations, respectively.

Experiment P1 We say that a rule is essential for a kernel if the kernel cannot be
verified without the rule. That is, (i) the kernel verifies when all rules are enabled, and
(ii) disabling all candidates generated by the rule means the kernel is no longer verifiable:
either a spurious error is reported or timeout is reached. For each rule, we ran GPUVerify
over the LOOP set with that rule disabled and counted the number of kernels for which
the result of verification changed.

The figures on the right of Table 3.3 summarise our results. This shows for 196 kernels
(not all different since multiple rules may be essential for the same kernel), some single rule
was essential for verification to succeed. Rules that are not essential for any kernels (r1,
r7 and r14) are redundant and should perhaps be removed. They have been superseded
by other more general rules.

In addition to noting when a rule was essential we counted two other scenarios. Firstly,
we noted when the result of analysing the kernel changed from verification fail, when the

74

Ta
bl

e
3.

3.
:P

er
-r

ul
e

st
at

ist
ic

so
fn

um
be

ro
fc

an
di

da
te

s,
re

fu
ta

tio
ns

an
d

in
va

ria
nt

s.
T

he
C

an
di

da
te

sc
ol

um
n

gi
ve

st
wo

nu
m

be
rs

fo
r

ea
ch

ru
le

:
(i)

th
e

nu
m

be
r

of
ke

rn
el

s
w

he
re

th
e

ru
le

gu
es

se
d

at
le

as
t

on
e

ca
nd

id
at

e
an

d
(ii

)
th

e
to

ta
ln

um
be

r
of

ca
nd

id
at

es
ge

ne
ra

te
d

by
th

e
ru

le
ov

er
al

lk
er

ne
ls.

† 1
0

ke
rn

el
s

ar
e

ex
cl

ud
ed

du
e

to
tim

eo
ut

.

A
cr

os
s
34

6
ke

rn
el

s
in

LO
O

P
†

C
ha

ng
e

if
ru

le
is

di
sa

bl
ed

R
ul

e
C

an
di

da
te

s
In

va
ria

nt
s

R
ef

ut
at

io
ns

H
it-

ra
te

%
Es

se
nt

ia
l

Fa
il
→

T
O

T
O

→
Pa

ss
r0

.
ac

ce
ss

Br
ea

k
(8

1)
27

7
13

3
14

4
48

.0
21

1
0

r1
.

ac
ce

ss
Sl

ic
e

(3
)

4
4

0
10

0.
0

0
0

0
r2

.
ac

ce
ss

St
rid

e
(1

68
)

51
8

44
3

75
85

.5
58

3
1

r3
.

ac
ce

ss
Sl

ic
eB

lo
ck

Lo
we

r
(3

3)
56

40
16

71
.4

1
3

1
r4

.
ac

ce
ss

Sl
ic

eB
lo

ck
U

pp
er

(3
3)

56
30

26
53

.6
1

2
0

r5
.

no
A

cc
es

sC
on

di
tio

na
lL

oo
p

(9
3)

63
0

54
6

84
86

.7
4

0
0

r6
.

gu
ar

dM
in

us
In

iti
al

Is
U

ni
fo

rm
(5

6)
18

2
13

8
44

75
.8

7
0

0
r7

.
gu

ar
dN

on
N

eg
(2

54
)

10
08

83
8

17
0

83
.1

0
0

0
r8

.
gu

ar
dB

ou
nd

(3
46

)
56

40
25

32
31

08
44

.9
5

0
0

r9
.

gu
ar

dS
tr

id
e

(1
24

)
39

2
33

4
58

85
.2

33
0

0
r1

0.
lo

op
Pr

ed
ic

at
eU

ni
fo

rm
(5

6)
19

8
15

3
45

77
.3

9
0

0
r1

1.
no

R
ea

d
(1

04
)

26
1

78
18

3
29

.9
17

0
0

r1
2.

no
W

rit
e

(1
31

)
30

6
91

21
5

29
.7

22
0

0
r1

3.
va

rP
ow

2
(6

5)
28

6
97

18
9

33
.9

11
0

0
r1

4.
va

rP
ow

2N
ot

Ze
ro

(6
5)

28
6

58
22

8
20

.3
0

1
0

r1
5.

va
rU

ni
fo

rm
(5

6)
25

09
26

24
83

1.
0

2
0

0
r1

6.
va

rR
el

at
io

na
lP

ow
2

(1
5)

76
8

30
73

8
3.

9
5

0
0

Su
m

13
37

7
55

71
78

06
41

.6
19

6
10

2

75

Table 3.4.: Per-kernel statistics of number of candidates, refutations and invariants
Per-kernel measures

Min Max Median Mean Std
Candidates 8 256 22.0 38.7 39.9
Invariants 0 107 11.5 16.1 14.4
Refutations 0 209 10.0 22.6 30.9

rule is enabled, to timeout, when the rule is disabled. This can be seen as a positive
characteristic of the rule: although the rule was not sufficient to prove the kernel correct;
it did enable GPUVerify to return a response in a timely fashion. Secondly, we noted
when the result of analysing the kernel changed from timeout, when the rule is enabled,
to pass, when the rule is disabled. This is a negative characteristic of the rule. In this
case, the same kernel8 was affected by the disabling of either rule r2 or r3. We conclude
that a candidate generated from either rule is difficult for CVC4 (the SMT solver to which
verification conditions are discharged) to reason about and causes timeout.

Experiment P2 We say that a rule r influences another rule s if disabling the candidates
generated by r affects the invariants that are generated for s. This can be the case if a
candidate guessed by s is only inductive in the presence of a candidate generated by r, in
which case disabling the candidates of r means that some candidate of s will be refuted.
We ran GPUVerify with each rule in turn disabled and counted the number of kernels
where the computed invariant differed from the invariant computed when all rules were
enabled. Figure 3.14 summarises the results of this experiment. For each pair of rules
(r, s) we give the number of kernels where r influenced s. We see that the matrix is sparse
(with only 24 non-zero entries), which suggests that the majority of our rules are non-
interfering. An exception is rule r9, which was introduced early during the development
of GPUVerify.

3.6.3. Evaluating Refutation Engine Performance

We ran the following experiments to determine the performance of refutation engines
for accelerating Houdini. All experiments in this section (i) included our user-supplied
invariants and (ii) used a timeout of 10 minutes. We chose these parameters because
we are interested in measuring the performance improvement of Houdini using a timeout
we believe to be reasonable for day-to-day use of GPUVerify. In this section we denote

8The sgemmNN kernel in the SHOC suite.

76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
...influences invariants generated by rule s

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

D
is

a
b

li
n

g
 r

u
le

 r
..

.

2

3 20

7 2 4
5 54 20 46

13 20 2
6 28
6 13

7

6 16 2 2
9 8

0

6

12

18

24

30

36

42

48

54

Figure 3.14.: Heatmap for each pair of rules (r, s) showing the number of kernels where r
influenced s

the standard Houdini algorithm as H and evaluate refutation engines that perform loop
unrolling for depth 1 and 2, LU(1) and LU(2), splitting loop checking, SBASE and
SSTEP, and dynamic analysis, DYN.

• Experiment A0 measures the performance of each of our proposed refutation en-
gines in isolation. For each refutation engine we quantify the time taken to reach
a fixpoint and number of refuted candidates. Our hypothesis was that different
refutation engines would have different performance characteristics and have com-
plementary refutation ability.

• Experiment A1 evaluates the speedup of using a refutation engine as an upfront
accelerator for Houdini. It quantifies the speedup of using a series of refutation
engines sequentially followed by the standard Houdini algorithm.

• Experiment A2 evaluates the speedup of using our refutation engines in parallel
with Houdini. It quantifies the speedup of using parallel refutation sharing.

Experiment A0 We ran each refutation engine in isolation and measured the time to
compute a fixpoint and the number of refuted candidates. To limit dynamic analysis
runtime we chose to stop execution after 1000 loop iterations. The results are summarised

77

Table 3.5.: Refutation engine performance and throughput
Engine Refutations Total time Throughput

(sec) (refutations/sec)
H 5310 16425 0.32
LU(1) 3115 45430 0.07
LU(2) 2528 61216 0.04
SBASE 2451 21725 0.11
SSTEP 2183 55880 0.04
DYN 2477 1813 1.35

in Table 3.5 where we use throughput, the number of refutations per second, as an indicator
of performance. We see that dynamic analysis is extremely effective. We also see that
LU(2) is less effective than LU(1), due to the large verification conditions that arise from
the deeper unwinding. We thus do not consider LU(2) further.

The same experimental results can be used to examine the extent to which different
refutation engines are complementary or redundant with respect to the candidates that
they refute. The Venn diagram of Figure 3.15 shows the number of refutations common
to the refutation engines we consider. We define the redundancy (or similarity) between
two refutation engines e1 and e2 as the Jaccard index [Jac12]: the size of the intersection
(the number of shared refutations) divided by the union (the total number of refutations),
i.e., |e1∩ e2| / |e1∪ e2|. High redundancy indicates that the engines refute a similar subset
of candidates; low redundancy indicates complementarity. Using this metric, dynamic
analysis is the most complementary refutation engine since its redundancy with any of
the other three engines is low (≤0.27) compared with all other combinations, such as the
most redundant pairing of LU(1) and SBASE (0.59).

Experiment A1 Our second performance experiment ran each refutation engine as an
upfront accelerator for Houdini. We use the notation e;H to denote the sequential pipeline
of using the refutation engine e before Houdini. For each configuration we measured the
total time for the accelerator and Houdini to return an inductive invariant. The top
half of Table 3.6 summarises the results compared to the standard Houdini algorithm.
The table shows that DYN and LU(1) gave the best overall speedups (1.25× and 1.13×,
respectively), and that SBASE led to a modest slow down overall. The maximum speedup
results show a best case speedup of 778× for DYN for the Rodinia lud_internal kernel:
by quickly eliminating some hard-to-refute candidates, DYN enables invariant generation
to complete in less than a second where otherwise the timeout limit of 10 minutes is

78

a. LU(1)
3115

b. SBASE
2451

c. SSTEP
2183

d. DYN
2447

a. 146

b. 258 c. 305

d. 875

ab. 871 cd. 358

ac. 332

bc. 78

ad. 158

bd. 29

abd. 512

abc. 595 bcd. 14

acd. 407

abcd. 94

Houdini
5310

Figure 3.15.: Venn diagram showing the number of complementary and redundant refuta-
tions generated by each engine

79

Table 3.6.: Speedups from using refutation engines sequentially and in parallel
Per-kernel speedup

Configuration Time (sec) Speedup Min Max Median Geomean
H 20661 1.00
LU(1); H 18269 1.13 0.14 269.54 0.92 0.99
SBASE; H 21078 0.95 0.07 2.51 0.89 0.87
SSTEP; H 19668 1.05 0.07 3.40 0.93 0.97
DYN; H 16496 1.25 0.01 778.21 1.17 1.42

Parallel 12570 1.64 0.20 612.87 1.02 1.49

reached. LU(1) gives a speedup of two orders of magnitude for the gpgpu-sim md5 kernel,
for similar reasons.

Experiment A2 In our final experiment we ran all refutation engines in parallel with
Houdini using parallel refutation sharing. The bottom of Table 3.6 summarises the result
(labelled ‘Parallel’). In this configuration dynamic analysis was not stopped after exploring
a certain number of iterations; instead, it was allowed to run until Houdini completed.
We see that a parallel configuration enables a 1.64× speedup above the standard Houdini
algorithm and 1.31× speedup above the best sequential configuration DYN;H.

3.7. Related Work

Invariant generation is a long-standing challenge in program verification that has received
significant attention. Techniques proposed to address this problem include abstract inter-
pretation [JM09], predicate abstraction [BPR01], Craig interpolation [McM06], template-
based constraint solving [GR09], abduction [DDLM13] and dynamic analysis [ECGN01].
In this section we discuss work that is most closely related to the study in this chapter.

Candidate-Based Invariant Generation Houdini was introduced as an annotation
assistant for the Extended Static Checker for Java (ESC/Java) [FL01], a lightweight static
analysis tool that checks for runtime errors such as null pointer dereferences. The original
aim of Houdini was to reduce the cost of user-supplied invariants. A formal presentation of
Houdini, including a proof of its termination, is given in [FJL01]. Houdini can be viewed
as a restriction of predicate abstraction [GS97] restricted to conjunctions of predicates.
Under predicate abstraction, program state is abstractly represented as a valuation of

80

predicates and program statements are predicate transformers. The predicate themselves
are usually generated from assertions in the program or refinement techniques (in the
context of counterexample-guided abstract refinement [CGJ+03]). Each Houdini iteration
is a form of predicate abstraction where each candidate is a predicate and each loop is
a predicate transformer. The restriction to only considering conjunctions of predicates
reduces the maximum number of SMT calls from exponential [BPR01] to linear [FL01] in
the number of predicates and is what makes the performance of Houdini predictable. This
restriction also makes it impossible to generate invariants with disjunctions or implications
over predicates using Houdini.

Abstract Interpretation Abstract interpretation is a general framework for building
program analyses [CC77]. A central idea is that of an abstract domain that approximates,
in a well-defined mathematical sense, the concrete properties of the program that we wish
to track. The abstract domain is a partially-ordered structure (e.g., a lattice) where the
ordering corresponds to the precision of the property being tracked. For example, the
interval abstract domain approximates the range (or interval) of values that a variable
can take and ordering is given by interval inclusion: e.g., the property 0 ≤ x ≤ 0 is
ordered below (and hence is more precise) than the property 0 ≤ x ≤ 100. Other well-
known numerical abstract domains include octagons and convex polyhedra. Predicate
abstraction is abstract interpretation over the abstract domain of Boolean combinations
of predicates and hence Houdini is also a form of abstract interpretation where we further
restrict the abstract domain to conjunctions of predicates (the powerset of candidates).
Invariant generation using abstract interpretation involves computing the least fixpoint of
the loop over a given abstract domain. Different abstract domains give different trade-offs
between precision and performance. The least fixpoint corresponds to the most precise
property that we can state about the loop. For example, the Interproc analyser can
generate invariants over the abstract domains of intervals, octagons and convex polyhedra
using the Apron library [JM09].

The main disadvantage of invariant generation using abstract interpretation is that it
is inflexible: the chosen abstract domain determines the form of invariants that can be
generated. For example, the interval domain generates invariants of the form c ≤ x and
x ≤ c (ranges of values where x is a program variable and c is a constant); the octagon
domain generates invariants of the form ±x±y ≤ c (polyhedra with at most 8 faces where
x, y are program variables and c is a constant); and the convex polyhedra domain gener-
ates invariants of the form Ax⃗ ≤ b⃗ (a system of linear inequalities where A is an m × n

matrix, x⃗ is a vector of n program variables and b⃗ is a vector of m constants) [JM09].

81

Hence, generating invariants beyond a given abstract domain requires new abstract do-
mains to be created. This is heavyweight compared to candidate-based methods that can
add new rules on an example-drive basis, as we have done with GPUVerify. A second
disadvantage is predictability. If the chosen abstract domain does not satisfy the ascend-
ing chain condition (all increasing sequences of elements eventually converge) then the
fixpoint computation may not converge and termination is not guaranteed. In this case, a
heuristic (widening) can be employed to force convergence to a post fixpoint and guaran-
tee termination; subsequently, further heuristics (narrowing) can be employed to regain
some of the lost precision [CC77]. In contrast, the convergence to a fixpoint is predictable
when using Houdini (because the number of candidates, and hence the abstract domain,
is finite).

Invariant Generation for Affine Programs An affine program is a program that
is restricted to operate on unbounded integers and affine (linear) expressions over pro-
gram variables. Invariant generation techniques for affine programs includes Craig in-
terpolation [McM06], abduction [DDLM13] and abstract acceleration [JSS14]. The main
disadvantage of these techniques is the restriction on input programs. In the domain
of GPU kernels, programs operate on fixed-width bit-vectors and floating-point numbers
and use non-affine arithmetic. We require invariants over bit-vectors to reason precisely
about arithmetic using power-of-two values (frequently encoded using shifting, masking
and other bitwise-operators) and require support for uninterpreted functions to abstract
floating-point operators. Examples of non-affine arithmetic in GPU kernels are reduction
operators that involve loops in which a counter exponentially varies power-of-two values
between an upper and lower bound.

Array Invariants The work of Kovács and Voronkov has examined the problem of
generating loop invariants for programs containing arrays [KV09]. The key idea is to
automatically derive update predicates that express the updates applied to arrays in a
loop. The update predicates capture the element written to, the value written and the
iteration in which the write occurred. These update predicates are then generalised by
an automatic first-order theorem prover, which enables non-trivial invariants (containing
quantifier alternations) to be generated. Since many of our rules are concerned with the
access pattern of the loop (analogous to the update predicates of this work), there is scope
for applying this work to GPU programs. A challenge will be eliminating quantifiers that
are implicitly given by the two-thread reduction.

82

Dynamic Invariant Generation The techniques discussed above use static analysis to
generate invariants with certainty. In contrast, dynamic invariant generation techniques
speculate likely invariants from program executions. A likely invariant is an assertion that
has met some statistical confidence level over the observed program executions; it may or
may not be a true invariant. Dynamic invariant generation was first introduced by the
Daikon system [ECGN01]. Likely invariants are discovered by instrumenting the program
to trace variables of interest, running the instrumented program over a test suite and
guessing and checking invariants with respect to the observed program executions. The
accuracy of the generated likely invariants depends in part on the quality and completeness
of dynamic executions. The refutation engine using dynamic analysis introduced in this
work (Section 3.5.1) is similar in the sense that we use dynamic analysis to eliminate false
candidates. The main difference is that we automatically generate test cases using kernel
preconditions rather than using a test suite.

Nimmer and Ernst compared the effectiveness of Daikon against Houdini for helping
programmers to write invariants using ESC/Java [NE02]. This found that both tools were
beneficial to users in different ways: Daikon helped users to express more invariants than
required with no loss of time and Houdini helped users to express more invariants in fewer
annotations.

3.8. Summary

A key problem in automating program verification is the generation of invariants. In the
context of GPUVerify, we have introduced new rules for reasoning precisely about GPU
kernels using candidate-based invariant generation. Refutations are a new parallelisable
method for accelerating the invariant generation computation of Houdini. Finally we have
studied the effectiveness of these techniques and evaluated it along two important axes,
precision and performance, against a large suite of 356 kernels.

83

4. Barrier Invariants: Precise Reasoning
for Data-Dependent Kernels

In this chapter we address the problem of precise and scalable reasoning for data-dependent
GPU kernels. This important class of kernel, characterised by control or data flow that is
dependent on shared state, is beyond the scope of existing techniques. We present a new
abstraction, barrier invariants, that enables precise reasoning for data-dependent kernels
whilst retaining the two-thread reduction necessary for scalable verification. The main
results of this chapter are:

• Identifying the problem of data-dependent GPU kernels and describing why existing
techniques fail, thus motivating the development of barrier invariants as a method
for recapturing this lost precision.

• A semantics based on barrier invariants, and soundness result that yields a verifica-
tion method. We then show how it can be made quantifier-free.

• A case study using barrier invariants to precisely reason about a real-world data-
dependent kernel, stream compaction. A critical subprocedure of stream compaction
is the prefix sum operation and we use barrier invariants to prove a functional spec-
ification of three distinct and widely-used prefix sum implementations.

• An experimental evaluation showing that barrier invariants enable precise and scal-
able reasoning for data-dependent GPU kernels.

Relation to Published Work The core material of this chapter was published in
[CDK+13]. We give additional material in the form of: (i) an extended syntax, semantics
and soundness proof for a kernel language supporting conditionals and loops; (ii) a result
showing the correspondence between barrier invariants and a refinement of the equality
abstraction [BCD+12]; and (iii) barrier invariants for Brent-Kung and Kogge-Stone prefix
sum kernels, which are only covered briefly by the paper.

84

4.1. The Need for Barrier Invariants

As discussed in Chapter 2, the techniques of GPUVerify and PUG achieve scalable ver-
ification using a two-thread reduction and ensure soundness using shared state abstrac-
tion. The purpose of the shared state abstraction is to over-approximate the behaviour of
threads not modeled by the two-thread reduction. In particular, the shared state abstrac-
tion determines the contents of shared state, as seen by each thread. A barrier guarantees
synchronisation and memory consistency; a kernel uses barriers to allow communication
between threads via shared state.1 On reaching a barrier a thread stalls until all threads
have reached the barrier and all shared memory accesses issued by all threads have com-
pleted. If no races have occurred then the contents of shared state is deterministic when
the barrier itself completes. The contents of shared state is determined by the state of the
kernel at the previous barrier (or at kernel entry when considering the first barrier) and
the set of shared memory writes issued by all threads since the previous barrier (see the
G-SYNC rule of [BCD+12]). However, the two-thread reduction means the contents of
shared state is unknown (except for the locations directly accessed by the pair of threads
under consideration). Thus, the role of the shared state abstraction is to over-approximate
the possible behaviours of other threads.

The existing techniques of GPUVerify and PUG consider two simple abstractions. The
adversarial abstraction, considered by both tools, makes no assumptions about the contents
of shared state. Shared state is simply not modeled: every read from shared state receives a
non-deterministic value and every write to shared state is ignored (a no-op). Consequently,
a thread may read any arbitrary value from shared state and, moreover, multiple reads of
the same location by the same thread can yield different values. The equality abstraction,
considered only by GPUVerify, models shared state but sets it non-deterministically at
each barrier so that each thread sees a consistent view of memory. In [BCD+12], the
semantics equip each thread with a shadow copy of the shared state. At a barrier, when
using the equality abstraction, each shadow copy is set non-deterministically, but equally.
That is, each thread sees an arbitrary but consistent value (both threads agree on the
value) from each location in shared state.

The examples of Figure 4.1 (deliberately contrived for the purpose of illustration) show
differences between the choice of shared state abstraction. All the examples are race-free
and correct, however, not all abstractions can precisely capture this fact. For each example
and abstraction, a tick ✓ or cross × denotes whether the example can be precisely reasoned

1In CUDA and OpenCL, barriers only guarantee synchronisation and memory consistency for threads
within the same group. There are no reliable mechanisms for inter-group synchronisation whilst exe-
cuting a kernel. Consequently, in this chapter we restrict our discussion to the single-group case.

85

(a) (b) (c) (d)
v = 2 * tid;
w = 2 * tid + 1;
A[v] = A[w];

v = B[0];
w = v ? tid : tid+1;
A[w] = tid;
v' = B[0];
assert(v == v');

A[tid] = tid;
barrier();
v = tid;
assert(A[v] == v);

A[tid] = tid;
barrier();
v = (tid+1)%n;
assert(A[v] == v);

Adversarial ✓ × × ×
Equality ✓ ✓ × ×
Known-Equality ✓ ✓ ✓ ×
Barrier Invariants ✓ ✓ ✓ ✓

Figure 4.1.: Examples with differing results using the adversarial and equality abstractions

about using this abstraction. The figure lists two further abstractions in anticipation of the
developments of this chapter — a refinement of the equality abstraction, known-equality,
and barrier invariants. These new abstractions are more refined than either the adversarial
or equality abstractions.

In these examples, tid denotes the id of a thread, v and w are thread-private variables
and A and B are arrays in shared state. In example (a) each thread is responsible for
two neighbouring indices of A. Consider threads with ids 0, 1, 2, 3 then the respective
values of the indices v and w are 0, 2, 4, 6 and 1, 3, 5, 7. This example is race-free using any
abstraction because the contents of shared state is irrelevant for verifying the correctness
of this code.

In example (b) we test two behaviours that distinguish the adversarial abstraction.
Initially, each thread reads the first element of B into a thread-private variable v. Then,
depending on the value of v, we assign either tid or tid+1 into w, which is then used as
an index for writing to A. Due to consistency the value read into v will be the same for
all threads and hence either every thread will write to A[tid] or every thread will write
to A[tid+1]; because these cases are mutually exclusive, the writes to A are race-free. For
example, consider threads with ids 0, 1, 2, 3 then the respective values of the w index will
be either 0, 1, 2, 3 or 1, 2, 3, 4. Using the adversarial abstraction the reads of B[0] may
yield different values, violating the mutually exclusive choice of assignment for w, resulting
in a (false positive) data race. All other abstractions model consistency and so correctly
reason about the example. The second behaviour, tested by the assert, shows that the
adversarial abstraction is even weaker. The same location B[0] is read again into a second
thread-private variable v'. Using the adversarial abstraction these reads (even from the
same location) can yield different values so the assert fails.

In example (c) each thread writes its identifier tid into its corresponding index of the
array A. After the barrier, the example asserts that the value of A at index tid is still

86

tid. This example fails under the adversarial abstraction and the equality abstraction.
Using the adversarial abstraction the read of the assert can yield any non-deterministic
value. The same result occurs under the equality abstraction because shared state is set
non-deterministically at the barrier. If we moved the assertion above the barrier then the
equality abstraction would suffice. We defer discussion of example (d) to Section 4.3.5,
where we introduce the known-equality abstraction.

We now introduce data-dependent kernels that are beyond the scope of the existing
adversarial or equality abstractions. A data-dependent GPU kernel has control or data
flow that is dependent on shared state. Consequently, the behaviour of a single thread
may depend on the control or data flow of other threads via communication through
shared memory. In particular, the access pattern of a given thread may be determined by
the control or data flow of other threads. The abstractions considered by existing work
are effective for data-independent kernels; however, they cannot reason precisely about
data-dependent kernels.

A Simple Data-Dependent Kernel Consider the following kernel where A and B
are arrays in shared memory, tid denotes the id of a thread, and f is a side-effect free
procedure which may read from shared state and ensures that for distinct threads s and
t, f(s) ̸= f(t).
A[tid] = f(tid);
barrier();
B[A[tid]] = tid;

This kernel is data-dependent because array B is written to at an index which is computed
by reading from shared state. The kernel is race-free because of the guarantees of the
procedure f. To see why this cannot be reasoned about precisely using the shared state
abstractions above consider the execution with respect to an arbitrary pair of distinct
threads, s and t. Because the threads are distinct, s ̸= t, execution of A[tid] = f(tid) is
race-free and will lead to a state in which A[s] ̸= A[t]. Using the adversarial abstraction any
value can be read from shared state. However, using the equality abstraction the arrays
A and B are set non-deterministically at the barrier. In particular, a possible assignment
that satisfies either abstraction is A[s] = A[t] = 0, which causes the statement B[A[tid]]
= tid to result in a (false positive) data race on B at index 0. That is, the adversarial and
equality abstractions are too coarse to reason precisely about this simple data-dependent
kernel.

87

3 1 7 0 4 1 6 3Given A

1 0 1 1 0 0 1 0flag

(i) reduce(A) = 25

(ii) scan(A)

(iii) split(A, flag)

(iv) compact(A, flag)

3 4 11 11 15 16 23 25

1 4 1 3 3 7 0 6

3 7 0 6

(v) sort(A) 0 1 1 3 3 4 6 7

Figure 4.2.: Data-parallel primitive examples. Given the inputs A and flag: (i) reduce
computes the sum of the elements, a1 + a2 + · · ·+ an; (ii) scan computes the
sum of all inclusive prefixes, [a1, (a1 + a2), . . . , (a1 + a2 + · · ·+ an)]; (iii) split
packs the elements of A so that elements with flag = 0 precede elements
with flag = 1; (iv) compact outputs the elements of A where flag = 1; (v)
sort computes a sorted array. The split, compact and sort primitives can
themselves be built using the scan primitive [Ble93, Hor05] and are data-
dependent.

The Importance of Data-Dependent GPU Kernels The class of data-dependent
GPU kernels is small but important. The experimental results of GPUVerify and PUG
show that the majority of kernels are not data-dependent and require only coarse shared
state abstractions. In a review of 605 kernels from nine sources we found that 20 ker-
nels (3%) were data-dependent [BBC+14]. Despite this, data-dependent GPU kernels
are critical when considering data-parallel primitives. A data-parallel primitive is a com-
mon building block or pattern for designing parallel algorithms and applications [Ble93].
Examples of data-parallel primitives include reduce, scan, split, compact and sorting op-
erations.2 Figure 4.2 gives examples of these primitives. The scan or prefix sum oper-
ation [Hor05, HSO07, SHZO07] is a key data-parallel primitive: it can be used to build
other primitives (split, compact and sorting) that are data-dependent. In turn, any al-
gorithm or application that uses these primitives exhibits data-dependent behaviour. In
Section 4.2 we discuss a stream compaction application, a generalisation of the compact
primitive, which is data-dependent.

Barrier Invariants This chapter develops barrier invariants as a technique to address
the problem of precise reasoning for data-dependent kernels. The key idea is to annotate
each barrier with an invariant: a property of shared state that must hold each time the
barrier is reached. This allows a richer shared state abstraction: instead of setting the
shared state to an arbitrary value, the shared state is set to an arbitrary value satisfying

2GPU libraries implementing data-parallel primitives include the Thrust Parallel Algorithms Library
(http://thrust.github.io), the CUDA Data-Parallel Primitives Library (http://cudpp.github.io)
and the OpenCL Data-Parallel Primitives Library (https://code.google.com/p/clpp/).

88

http://thrust.github.io
http://cudpp.github.io
https://code.google.com/p/clpp/

the barrier invariant. Properties captured before the barrier can be maintained across the
barrier. This coincides with the programmer’s intuition that a barrier allows sharing of
values, and therefore properties, between threads. Barrier invariants enable more precise
reasoning whilst retaining the scalable approach of the two-thread reduction.

For example, a barrier invariant allows us to re-capture the precision lost by the adver-
sarial and equality abstractions in the problematic data-dependent kernel. The invariant
states that the elements of A are distinct (where x and y range over thread ids):
A[tid] = f(tid);
barrier(); barrier_invariant(∀x ̸= y : A[x] ̸= A[y]);
B[A[tid]] = tid;

Using the two-thread reduction, the invariant is established by checking that A[s] ̸= A[t]
for an arbitrary pair of distinct threads s and t. Because s and t are arbitrary this proves
that the invariant holds for all pairs of distinct threads (the forall introduction rule [HR04,
sec. 2.3]). Therefore, after the barrier, it is sound to assume that the invariant for all pairs
of distinct threads and, in particular, the threads s and t under consideration. This
property is then sufficient to show race-freedom of the write to B.

Barrier Invariant Instantiation In fact, in the example above, it suffices to assume
the barrier invariant only for the pair (s, t). That is, only the assumption A[s] ̸= A[t]
after the barrier is necessary for proving race-freedom; other pairs of distinct threads are
irrelevant. This observation is useful for avoiding a quadratic number of assumptions (for
all pairs of distinct threads) after the barrier. We will use this intuition for formalising
the instantiation of a barrier invariant in a quantifier-free manner (Section 4.3.4).

4.2. Stream Compaction Example

Figure 4.3 presents pseudo-code for a stream compaction algorithm: a parallel program
that filters an input array with respect to a predicate p. Stream compaction is commonly
used for removing redundant or dead elements from a data set and has many applications in
GPU programming, including parallel breadth first tree traversal, ray tracing and collision
detection [BOA09]. For an input array data, each thread t tests its respective element
data[t] against p and writes 1 to the temporary array flag if the element satisfies p and
0 otherwise. In the compact stage, each thread t for which p(data[t]) holds must write
to an index of output array out such that all elements to be kept are written contiguously.
This index is the sum of the values in flag at indices 0 ≤ i < t.

89

// data, out, idx: arrays in shared memory
procedure compact(data, out)

// (i) test each element with predicate p
in parallel for each thread tid
flag[tid] = p(data[tid])

// (ii) compute indices for compaction
idx = prescan(flag)
// (iii) compaction
in parallel for each thread tid

if (flag[tid])
out[idx[tid]] = data[tid]

A B C D E F G H

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

A B C D E F G H

A C D G

data

flag

idx

compact

out

Figure 4.3.: Stream compaction program and example (image courtesy M. Harris [HSO07])

The index can be computed using an exclusive prefix sum operator, also known as a pres-
can [Ble93, HSO07]. This is a variant of the scan operation (Figure 4.2). Given an array
[a1, a2, . . . , an] and an associative operator ⊕ with identity e, the prescan operator com-
putes the sums of all exclusive prefixes: [e, a1, (a1⊕a2), . . . , (a1⊕a2⊕· · ·⊕an−1)]. For exam-
ple, taking ⊕ and e to be + and 0, respectively, the prescan of the array [3, 1, 7, 0, 4, 1, 6, 3]

is [0, 3, 4, 11, 11, 15, 16, 22]. The prescan can be formed by computing the scan and then
shifting the elements right by one and inserting the identity.

A kernel implementing stream compaction is data-dependent because the access pattern
of a thread is determined by the values of the input array: not just the element that
‘belongs’ to a thread, but also the flag result of all preceding threads. Determining data
race-freedom depends on the correctness of the prescan and, in particular, the constraints
the operation imposes on the shared array idx: if flag[s] = flag[t] = 1 for distinct
threads s and t (so that both s and t will write to the output array), then race-freedom
requires that idx[s] ̸= idx[t].

Figure 4.4 presents an OpenCL kernel for stream compaction, to be executed by a
group of n threads. The φ annotations that follow barrier() statements are barrier
invariants that we will use to prove the prescan specification in Section 4.4. The id of a
thread is denoted tid, and data, out, flag and idx are arrays declared in GPU shared
memory. The prescan operation is performed inline, implemented from an algorithm due
to Blelloch [Ble93]. This prescan implementation is used frequently in the GPU code
repositories we have examined.

Although the algorithm works in-place over the idx array, it is helpful to see that the
correctness comes from viewing the array as a tree. If the length n of idx is a power-
of-two, the array can be viewed as a balanced binary tree of depth lgn. Figure 4.5,
due to Blelloch [Ble93], shows the state of idx as the prescan proceeds: colouring the

90

__kernel void compact(
__global TYPE *out,
__global TYPE *data,
__local unsigned *flag,
__local unsigned *idx,
unsigned n) {

unsigned left, right;
unsigned tid = get_local_id(0);

// (i) test each element with predicate p
flag[tid] = p(data[tid]);
// (ii) compute indices for compaction
barrier(CLK_LOCAL_MEM_FENCE); // φload
if (tid < n/2) {

idx[2*tid] = flag[2*tid];
idx[2*tid + 1] = flag[2*tid + 1];

}

// (ii)(a) upsweep
unsigned offset = 1;
for (unsigned d = n/2; d > 0; d /= 2) {

barrier(CLK_LOCAL_MEM_FENCE); // φus
if (tid < d) {
left = offset * (2 * tid + 1) - 1;
right = offset * (2 * tid + 2) - 1;
idx[right] += idx[left];

}
offset *= 2;

}

// (ii)(b) downsweep
if (tid == 0) idx[n-1] = 0;

for (unsigned d = 1; d < n; d *= 2) {
offset /= 2;
barrier(CLK_LOCAL_MEM_FENCE); // φds
if (tid < d) {
left = offset * (2 * tid + 1) - 1;
right = offset * (2 * tid + 2) - 1;
unsigned temp = idx[left];
idx[left] = idx[right];
idx[right] += temp;

}
}
barrier(CLK_LOCAL_MEM_FENCE); // φspec

// (iii) compaction
if (flag[tid]) out[idx[tid]] = data[tid];

}

Figure 4.4.: OpenCL stream compaction kernel using n threads, prescan inlined. The
kernel assumes that data and out are arrays of TYPE (defined by some macro)
and that p() is a predicate defined over this type.

91

3 4 7 11 4 5 6 25

3 4 7 11 4 5 6 14

3 4 7 7 4 5 6 9

3 1 7 0 4 1 6 3

(3) d = 0
(3) offset = 8

(2) d = 1
(2) offset = 4

(1) d = 2
(1) offset = 2

(0) initially
(0) d = 4
(0) offset = 1

3 4 7 11 4 5 6 0

3 4 7 0 4 5 6 11

3 0 7 4 4 11 6 16

0 3 4 11 11 15 16 22

(4) clear
(4) offset = 8

(5) d = 1
(5) offset = 4

(6) d = 2
(6) offset = 2

(7) d = 4
(7) offset = 1

T0 T1 T2 T3

T0 T1

T0

T0 T1 T2 T3

T0 T1

T0

(a) upsweep (b) downsweep

Figure 4.5.: Blelloch prescan example using n = 8 elements

elements that are updated at each iteration shows the tree traversed by the algorithm.
Each iteration of the upsweep and downsweep can be identified by the value of offset,
which gives the ‘distance’ between vertices at that depth of the tree, and d, which denotes
the number of active threads. The parallelism of the algorithm is due to the vertices at the
same depth being updatable simultaneously. The figure shows the assigned thread (T0,
T1, T2, T3) per sub-operation of the upsweep and downsweep. Note that the thread-to-
element assignment changes at different depths of the tree.

a. The upsweep is a reduction working from the leaves of the tree up to the root.
Pairs of vertices (idx[left], idx[right]) are summed until the root contains the
full reduction and other elements form partial sums.

b. The downsweep combines the upsweep partial sums to give the prescan result. Ini-
tially, the identity 0 is inserted into the root, marked ‘clear’ in step (4) of Figure 4.4.
The downsweep then traverses down the tree. At each level of the tree, an active
vertex: (i) copies its value to its left child idx[left] (the dotted arrow), and (ii)
sums its value with the old value of its left child temp (this value is a partial sum
generated by the upsweep), storing the value in its right child idx[right] (the black
arrows).

The prescan specification ensures that idx[x] =
∑

0≤i<x flag[i] for all x. The stream
compaction kernel additionally guarantees that the input is non-negative: 0 ≤ flag[x] for
all x. Together these imply that the output satisfies a monotonic property: for all x < y

we have idx[x] + flag[x] ≤ idx[y].

Proof. By the prescan specification, we have idx[x] =
∑

0≤i<x flag[i] and idx[y] =∑
0≤i<y flag[i]. Then, because x < y we have idx[y] =

∑
0≤i<x flag[i] +

∑
x≤i<y flag[i],

92

which is idx[x] +
∑

x≤i<y flag[i]. Additionally since all elements of flag are non-negative
we know flag[x] ≤

∑
x≤i<y flag[i]. Hence, we have idx[x] + flag[x] ≤ idx[y], as re-

quired.

Hence, for all x ̸= y, if 0 < flag[x] ∧ 0 < flag[y] then idx[x] ̸= idx[y], which suffices to
prove race-freedom.

Proof. Assume that x < y. Then the monotonic property means that idx[x] + flag[x] ≤
idx[y]. Additionally, since 0 < flag[x] we must have a strict inequality idx[x] < idx[y].
This holds symmetrically if y < x and therefore idx[x] ̸= idx[y], as required.

Blelloch proved that his algorithm satisfies the prescan specification using induction
on the pre-order traversal of the tree [Ble93]. Unfortunately, we cannot use this proof
directly as we need to prove the specification of the kernel implementing the algorithm
(direct source code analysis), rather than the algorithm itself. Furthermore, the proof by
Blelloch requires a global view of shared state, whereas the use of the two-thread reduction
means that we require a method that can reason from the point of view of an arbitrary
thread. The development of barrier invariants will give us another route of attack.

4.3. The Two-Thread Reduction with Barrier Invariants

We now give a formal semantics to barrier invariants. Starting with a simple kernel pro-
gramming language with barrier invariants (Section 4.3.1) we give (i) a concrete lock-step
semantics and (ii) an abstract semantics using the two-thread reduction (Section 4.3.2).
The main result of this section is a soundness theorem: if a kernel is correct with respect
to the abstract semantics then the kernel is correct with respect to the concrete semantics
(Section 4.3.3). Hence, it suffices to check a kernel with respect to the abstract seman-
tics. We combine this result with the notion of barrier invariant instantiation to yield a
quantifier-free verification method (Section 4.3.4).

4.3.1. Syntax

Figure 4.6 gives the syntax for a simple kernel programming language with barrier in-
variants. The language is an extension of prior work [CDK+13] that formalised barrier
invariants for straight-line GPU kernels without consideration for conditionals or loops.

A kernel consists of a declaration of the number of threads that will execute (threads:
number) and a (possibly compound) statement, which is the body of the kernel. The set
name denotes the local variables of a kernel and includes a reserved read-only variable tid,

93

kernel ::= threads: number;
main: stmt;

stmt ::= basic_stmt
| stmt; stmt
| barrieriexpr
| if (expr) then {stmt} else {stmt}
| while (expr) do {stmt}

basic_stmt ::= name := expr | name := sh[expr] | sh[expr] := expr
expr ::= constant literal | name | expr op expr
name ::= thread identifier tid | any valid C name
iexpr ::= constant literal | sh[iexpr] | name | name | iexpr op iexpr

Figure 4.6.: Syntax for a kernel programming language with barrier invariants

the unique identifier of each thread. Kernel statements allow assignment to local variables,
access to shared memory (sh) and barrier synchronisation. Statements can be combined
sequentially and also in conditionals and loops. The syntax of expressions does not allow
referencing of shared memory. This ensures that there is at most one read or write per
statement and no reads of shared memory can occur in the guards of conditionals or loops.
A kernel without these restrictions can easily be preprocessed into this form.

Each barrier statement is annotated with a barrier invariant φ ∈ iexpr. The syntax
of barrier invariants extends the expr syntax to cater for references to shared memory. A
barrier invariant is implicitly quantified over all pairs of distinct threads.3 Given a local
variable v ∈ name we use the notation v or v to refer, respectively, to the v of the first or
second thread of the pair. For example, if x is a local variable then the invariant expression
sh[x + tid] = sh[x + tid] can be read as ∀s ̸= t : sh[xs + s] = sh[xt + t] where xs and xt

refer to the local variable x of threads s and t, respectively, and where tid is replaced by s
and tid by t. Together, this means that the syntax of barrier invariants allows us to state
properties about shared memory from the point of view of an arbitrary pair of threads.

4.3.2. Semantics

Let P be a kernel executed by n threads and Word be the type of memory words. We
assume that a value of type Word can be interpreted as a bit-vector or Boolean. A thread
state σ for P is a tuple:

(sh, l, R,W) ∈ ThreadStates

3As in prior work [CDK+13], we present barrier invariants with respect to a two-thread reduction. There
is no conceptual difficulty with generalising barrier invariants to larger thread reductions. However,
there would be a notation burden (to refer to each thread version of a local variable) and we have not
found a practical need for barrier invariants involving more than two threads simultaneously to prove
data race-freedom of a kernel.

94

where sh : N → Word is the shared memory of the kernel; l : name → Word is the thread
local store; and R,W ⊆ N are read and write sets recording the locations in shared memory
that the thread has accessed since the last barrier. The read and write sets are used for
race checking.

A predicated statement is a pair (s, p) where s ∈ stmt and p ∈ expr. Intuitively, (s, p)
denotes a statement s that should be executed if the predicate p holds and has no effect
otherwise. The set of all predicated statements is denoted PredStmts.

The rules of Figure 4.7 define a binary relation

→ ⊆ (ThreadStates × PredStmts)× ThreadStates

describing the evolution of a single thread state whilst executing a predicated basic state-
ment. Similar to earlier work [BCD+12] we combine each thread state with a predicated
statement in anticipation of our lock-step semantics. Under lock-step semantics, multiple
threads execute the same statement of a kernel at the same time. Predication caters for
the fact that distinct threads may have divergent control-flow. For readability, given a
thread state (sh, l, R,W) and a predicated statement (s, p) we write ((sh, l, R,W), s, p)

rather than ((sh, l, R,W), (s, p)).
The evaluation of an expression e with respect to a local store l is denoted el and defined

inductively.

constant literall = constant literal

namel = l(name)
(expr1op expr2)l = exprl1 op exprl2

The evaluation of a predicate p (a Boolean expression) is written as pl.
The rule T-Disabled ensures that a predicated statement has no effect if the predicate

p does not hold (i.e., ¬pl). The remaining rules for local store and shared state updates
are defined in a standard manner: T-Assign updates the local store l according to the
assignment (the evaluation of the expression e); T-Read updates the local store with a
value from shared state and records the location read-from in R; and T-Write updates
shared memory according to the assignment and records the location written to in W .

A group state Σ for P is a tuple:

(sh, (l0, R0,W0), . . . (ln−1, Rn−1,Wn−1))

95

T-Disabled
¬pl

((sh, l, R,W), basic_stmt, p) → (sh, l, R,W)

T-Assign
pl l′ = l[v 7→ el]

((sh, l, R,W), v := e, p) → (sh, l′, R,W)

T-Read
pl l′ = l[v 7→ sh(el)] R′ = R ∪ {el}
((sh, l, R,W), v := sh[e], p) → (sh, l′, R′,W)

T-Write
pl sh′ = sh[el1 7→ el2] W ′ =W ∪ {el1}
((sh, l, R,W), sh[e1] := e2, p) → (sh′, l, R,W ′)

Figure 4.7.: Rules for predicated thread execution of basic statements

where lt(tid) = t for all threads 0 ≤ t < n; and sh is the shared memory of the kernel; and
(sh, lt, Rt,Wt) is the thread state of thread t.

We refer to the shared memory of a group state Σ as Σ.sh. We write Σ(t) to refer to the
thread state (sh, lt, Rt,Wt) of thread t. We also write Σ(t).l, Σ(t).R and Σ(t).W to refer
to the thread-specific components of this thread state.

A kernel state is a tuple (Σ, ss) where Σ is a group state and ss is an ordered sequence of
predicated statements to be executed by the kernel. The set of all kernel states is denoted
KernelStates. A kernel state (Σ, ss) is a valid initial state if Σ(t).R = Σ(t).W = ∅ for all
threads 0 ≤ t < n and ss = ⟨(s, true)⟩ where s is the body of the kernel (declared using
main : s).

The rules of Figure 4.8 define a binary relation

→k ⊆ KernelStates × (KernelStates ∪ {error})

where error is a designated error state. We overload the operator @ to denote prepending
a single predicated statement to the front of a sequence of predicated statements, s@ss,
and concatenation of two predicated statement sequences, ss@ss′. The semantics define
a lock-step execution of the kernel: all threads execute a statement of the kernel before
proceeding to the next statement. In rules K-Race and K-Step, σ0, . . . , σn−1 are the
thread states reached by each thread after executing the given predicated statement using
the rules of Figure 4.7. The predicate race checks whether the execution of this basic

96

statement would cause a data race using the read and write sets of the threads:

race(σ0, . . . , σn−1) ≜ ∃ 0 ≤ s ̸= t < n : (σs.R ∪ σs.W) ∩ σt.W ̸= ∅ .

That is, if there exist two threads where the reads or writes of the first thread s conflict
with the writes of the second thread t. If a race occurs then K-Race causes execution to
go to the designated error state error. Otherwise, the rule K-Step allows the kernel to
transition to a new kernel state where the local store and read/write sets for thread t are
taken from thread state σt, and where the shared state is derived by merging the shared
state associated with each thread state σt according to the write sets:

merge(σ0, . . . , σn−1)(z) ≜

σt.sh(z) if z ∈ σt.W

σ0.sh(z) otherwise.

Since K-Step requires that no race has occurred there is at most one t with z ∈ σt.W .
That is, merge always yields a unique successor shared state.

On reaching a barrier, K-Bar-Diverge and K-Bar-Nop check whether the barrier
has been reached under divergent (there exist two threads with the first disabled and the
other enabled) or uniformly vacuous (all threads are disabled) control-flow, respectively.
Divergent control-flow leads to error, whereas uniformly vacuous control flow results in a
no-op. In the case where control flow is not uniformly vacuous (i.e., all threads are enabled)
the rules K-Bar-Err and K-Bar-Inv check whether the associated barrier invariant φ
holds for all pairs of distinct threads. The valuation of a barrier invariant φ with respect
to the group state Σ and distinct threads s and t is denoted JφKs,tσ and defined inductively.

Jconstant literalKs,tΣ = constant literalJsh[iexpr]Ks,tΣ = Σ.sh(JiexprKs,tΣ)JnameKs,tΣ = Σ(s).l(name)JnameKs,tΣ = Σ(t).l(name)Jiexpr1op iexpr2Ks,tΣ = Jiexpr1Ks,tΣ op Jiexpr2Ks,tΣ

Note that a variable v occurring as v, respectively v, is evaluated in the context of thread
s, respectively t. If the invariant does not hold for all pairs of distinct threads then the
execution goes to error using K-Bar-Err. Otherwise, rule K-Bar-Inv resets the read
and write sets for all threads and allows execution to proceed beyond the barrier.

The remaining rules are for execution of compound statements. Rule K-Seq is straight-

97

K-Race
∀ 0 ≤ t < n : (Σ(t), basic_stmt, p) → σt race(σ0, . . . , σn−1)

(Σ, (basic_stmt, p)@ss) →k error

K-Step
∀ 0 ≤ t < n : (Σ(t), basic_stmt, p) → σt ¬race(σ0, . . . , σn−1)

sh′ = merge(σ0, . . . , σn−1) ∀ 0 ≤ t < n : Σ′(t) = (sh′, σt.l, σt.R, σt.W)

(Σ, (basic_stmt, p)@ss) →k (Σ′, ss)

K-Bar-Diverge
∃ 0 ≤ s ̸= t < n : pΣ(s).l ∧ ¬pΣ(t).l

(Σ, (barrierφ, p)@ss) →k error

K-Bar-Err
∀ 0 ≤ t < n : pΣ(t).l

∃ 0 ≤ s ̸= t < n : ¬JφKs,tΣ

(Σ, (barrierφ, p)@ss) →k error

K-Bar-Nop
∀ 0 ≤ t < n : ¬pΣ(t).l

(Σ, (barrierφ, p)@ss) →k (Σ, ss)

K-Bar-Inv
∀ 0 ≤ t < n : pΣ(t).l

∀ 0 ≤ s ̸= t < n : JφKs,tΣ

∀ 0 ≤ t < n : Σ′(t) = (Σ.sh,Σ(t).l, ∅, ∅)
(Σ, (barrierφ, p)@ss) →k (Σ′, ss)

K-Seq
(Σ, (S1;S2, p)@ss) →k (Σ, (S1, p)@(S2, p)@ss)

K-Cond
v is fresh

(Σ, (if (e) then {S1} else {S2}, p)@ss) →k (Σ, (v := e, p)@(S1, p ∧ v)@(S2, p ∧ ¬v)@ss)

K-Loop
∃ 0 ≤ t < n : (p ∧ e)Σ(t).l v is fresh

(Σ, (while (e) do {S}, p)@ss) →k (Σ, (v := e, p)@(S, p ∧ v)@(while (e) do {S}, p)@ss)

K-Done
∀ 0 ≤ t < n : ¬(p ∧ e)Σ(t).l

(Σ, (while (e) do {S}, p)@ss) →k (Σ, ss)

Figure 4.8.: Rules for concrete lock-step semantics

98

forward. The rule K-Cond decomposes a conditional statement into a sequence of pred-
icated statements. The condition guard e is evaluated by each thread in a fresh local
variable v, the then branch S1 is executed by all threads under the predicate p∧ v (where
p is the initial predicate on entry to the conditional), and the else branch S2 is executed
by all threads under the predicate p∧¬v. The rule K-Loop and K-Done handle loops. A
loop is executed if the loop guard e holds for some thread t. Threads that are not enabled
for the loop execute no-ops. The rule K-Loop unpeels an iteration of the loop: the loop
guard is evaluated in a fresh local variable v and the loop body is executed under the
predicate p ∧ v. The rule ensures that we the kernel keeps looping as long as there exists
a thread that needs to loop. The loop exits using K-Done when all threads evaluate the
loop guard as false.

Abstract Semantics We now proceed to the abstract semantics which describes the
execution of a kernel P with respect to a pair of distinct threads (s, t). We refer to (s, t)

as the pair of threads under consideration. We begin by giving the informal intuition of
our abstract semantics before describing them formally. The threads behave as if they are
the only threads executing the kernel: they perform local updates, access shared state and
record all shared locations to their respective read and write sets. If a data race or barrier
divergence occurs then the execution aborts.

On reaching a barrier, A-Bar-Diverge and A-Bar-Nop check whether the barrier
has been reached under divergent (one thread is disabled with the other enabled) or uni-
formly vacuously (both threads disabled) control-flow. When both threads are enabled
— i.e., A-Bar-Inv or A-Bar-Err — a check determines whether the associated barrier
invariant φ holds. This check must take into account updates to shared memory by addi-
tional threads not considered by the two-thread reduction. We handle this by considering
whether a shared memory location v was accessed by s or t since the last barrier. There
are two key cases:

• v was accessed by at least one of s or t: We say v is a known location. Moreover
it is sound to assume that v has not been modified by any other thread r ̸∈ {s, t}
because the two-thread reduction considers all possible pairs of distinct threads. In
particular, if r did write to v then because some x ∈ {s, t} accesses v a data race
will be detected by the pair (x, r) and the kernel will not be deemed correct.

• v was not accessed by s or t: We say v is an unknown location. In this case,
v may have been modified by some thread r ̸∈ {s, t}. A safe approximation is to
assume that v contains an arbitrary value when evaluating the barrier invariant.

99

If there exists an assignment to the unknown locations yielding a state in which φ does
not hold for (s, t) then execution aborts. This is because there may be a concrete kernel
state that matches this state.

On the other hand, if φ holds for the pair (s, t) under all assignments to unknown
locations then, because (s, t) is arbitrary, it is sound to assume φ holds for all pairs of
distinct threads. Execution continues by transitioning to an abstract state in which:

• the local stores for s and t and the values of known locations in shared memory are
preserved;

• the read and write sets for s and t are cleared; and

• the barrier invariant φ is assumed to hold for all pairs of distinct threads.

More formally, an abstract group state T for P with respect to threads s and t is a tuple:

(sh, (ls, Rs,Ws), (lt, Rt,Wt)) .

It is similar to a (concrete) group state except that only the states of threads s and t

are represented. We use T (s) and T (t) to denote the thread states of s and t. We write
knowns,t(T) for the set of shared locations collectively accessed by s and t since the last
barrier:

knowns,t(T) ≜ T (s).R ∪ T (s).W ∪ T (t).R ∪ T (t).W .

The rules of Figure 4.9 define the evolution of abstract group states whilst executing a
sequence of predicated statements. The majority of rules are a straightforward restriction
of their concrete counterpart to an arbitrary pair of threads. That is, we remove quantifiers
over all threads (0 ≤ t < n) and replace the premises with explicit instances for threads
s and t. The main differences are highlighted and correspond to the rules concerned with
barrier invariants. The merge function restricted to two threads is:

merge(σs, σt)(z) ≜

σt.sh(z) if z ∈ σt.W

σs.sh(z) otherwise.

On reaching a barrier where the predicate is enabled uniformly, the rules A-Bar-Err
and A-Bar-Inv check whether the associated barrier invariant φ holds in all concrete
states that agree with the current abstract state on the local stores of s and t and on the
values of known locations. Formally, we define a concretisation operator γs,t yielding the

100

set of such concrete group states given an abstract group state.

γs,t(T) ≜ {Σ a concrete group state | Σ(s).l = T (s).l ∧
Σ(t).l = T (t).l ∧∧

v∈knowns,t(T)(Σ.sh(v) = T.sh(v))}

Rule A-Bar-Err aborts if there exists a concrete state Σ ∈ γs,t(T) such that the barrier
invariant does not hold with respect to Σ for the pair (s, t). If the barrier invariant holds for
(s, t) in every state of γs,t(T) then execution proceeds past the barrier by rule A-Bar-Inv.
A concrete state Σ′ ∈ γs,t(T) is chosen arbitrarily such that the barrier invariant φ holds
in Σ′ for every pair of distinct threads (x, y). Any successor state satisfying this condition
is considered by the rule. The successor abstract state T ′ is obtained by projecting Σ′ with
respect to threads s and t while emptying the read/write sets of s and t and discarding the
local stores and read/write sets of all other threads. We define an abstraction operator
αs,t.

αs,t(Σ) ≜ (Σ.sh, (Σ(s).l, ∅, ∅), (Σ(t).l, ∅, ∅)) .

Necessity of Known Locations We now demonstrate why it is necessary to con-
sider known locations when checking barrier invariants. Consider a version of the rule
A-Bar-Inv, which uses a concretisation operator that does not restrict shared state to
known locations. Instead, concretised states use the abstract shared memory directly.

γs,t(T) ≜ {Σ a concrete group state | Σ(s).l = T (s).l ∧
Σ(t).l = T (t).l ∧
Σ.sh = T.sh }

This version of the abstract rules is unsound. Consider the following incorrect kernel where
A is an array in shared memory.4

A[tid] = 0;
barrier(); // φ1

A[tid] = tid + 1;
barrier(); // φ2

The first barrier invariant φ1 ≜ A[tid] = 0 establishes that all elements of A are zero. Then
each thread updates its corresponding element by tid + 1. For example, if the kernel is
executed with 4 threads then A = [1, 2, 3, 4] and, in particular, A[0] ̸= 0 when the second
barrier is reached. The second barrier invariant φ2 ≜ tid ̸= 0 ∧ tid ̸= 0 ⇒ A[0] = 0

4Thanks to Jeroen Ketema for this counterexample.

101

A-Race
(T (s), basic_stmt) → σs (T (t), basic_stmt) → σt

race(σs, σt)
(T, (basic_stmt, p)@ss) →k error

A-Step
(T (s), basic_stmt) → σs (T (t), basic_stmt) → σt

¬race(σs, σt)
sh′ = merge(σs, σt)

T ′ = (sh′, (σs.l, σs.R, σs.W), (σt.l, σt.R, σt.W))

(T, (basic_stmt, p)@ss) →k (T ′, ss)

A-Bar-Diverge
pT (s).l ∧ ¬pT (t).l

(T, (barrierφ, p)@ss) →k error

A-Bar-Err
pT (s).l ∧ pT (t).l

∃ Σ ∈ γs,t(T) : ¬JφKs,tΣ

(T, (barrierφ, p)@ss) →k error

A-Bar-Nop
¬pT (s).l ∧ ¬pT (t).l

(T, (barrierφ, p)@ss) →k (T, ss)

A-Bar-Inv
pT (s).l ∧ pT (t).l

∀ Σ ∈ γs,t(T) : JφKs,tΣ

Σ′ ∈ γs,t(T) ∀ 0 ≤ x ̸= y < n : JφKx,yΣ′

T ′ = αs,t(Σ′)

(T, (barrierφ, p)@ss) →k (T ′, ss)

A-Seq
(T, (S1;S2, p)@ss) →k (T, (S1, p)@(S2, p)@ss)

A-Cond
v is fresh

(T, (if (e) then {S1} else {S2}, p)@ss) →k (T, (v := e, p)@(S1, p ∧ v)@(S2, p ∧ ¬v)@ss)

A-Loop
(p ∧ e)T (s).l ∨ (p ∧ e)T (t).l v is fresh

(T, (while (e) do {S}, p)@ss) →k (T, (v := e, p)@(S, p ∧ v)@(while (e) do {S}, p)@ss)

A-Done
¬(p ∧ e)T (s).l ∧ ¬(p ∧ e)T (t).l

(T, (while (e) do {S}, p)@ss) →k (T, ss)

Figure 4.9.: Rules for abstract two-threaded semantics

102

incorrectly asserts that if the pair of threads under consideration does not include thread
0 then A[0] = 0. In a concrete execution φ2 is false.

However, consider an abstract execution where the threads under consideration do not
include thread 0 and we use the erroneous concretisation operator γs,t in A-Bar-Inv.
After the first barrier the invariant φ1 is assumed for all pairs of distinct threads. In
particular, the shared state satisfies A[0] = 0. Then the two threads under consideration
update their respective elements (which will not include element 0). At the second barrier,
φ2 is checked under all concrete states that satisfy the erroneous concretisation operator.
Since this operator preserves all locations in shared state without distinguishing between
known and unknown locations we have A[0] = 0, which does not reflect the true state of
shared memory, and thus φ2 holds. Intuitively, the problem is that the barrier invariant
reasons about locations of shared state that the thread has not accessed. In particular,
the location A[0] is unknown if the threads under consideration do not include thread 0.
Thus checking a barrier invariant with respect to known locations is critical for soundness.

4.3.3. Soundness

Theorem 4.1 (Soundness). Let P be a kernel executed by n threads. If for every pair of
distinct threads 0 ≤ s ̸= t < n, no execution of the kernel P with respect to the abstract
semantics (denoted As,t(P)) from a valid initial state leads to error, then no execution of
P from a valid initial state leads to error.

Before presenting the proof we define a projection operator that takes a concrete kernel
state and a pair of threads (s, t) and returns a set of abstract kernel states.

πs,t(Σ, ss) ≜ {((sh′, πs(Σ), πt(Σ)), tt) | ∀ v ∈ knowns,t(Σ) : sh′(v) = Σ.sh(v) ∧
∃ tt′ ∈ PredStmts : ss = tt′@tt}

where πx(Σ) ≜ (Σ(x).l,Σ(x).R,Σ(x).W) and knowns,t(Σ) ≜ Σ(s).R ∪ Σ(s).W ∪ Σ(t).R ∪
Σ(t).W . Two properties hold for every abstract kernel state (T, tt) in πs,t(Σ, ss): (i) all
known locations are preserved between Σ.sh and T.sh; and (ii) the abstract sequence of
predicated statements tt is some suffix of the concrete sequence ss.

Proof. The proof is by contradiction. Therefore, assume that no execution of As,t(P) for
any pair of threads s and t leads to error, but that P either has (i) a data race, (ii) barrier
divergence or (iii) violates a barrier invariant. Hence, there is an execution of P from
a valid initial state to a state where either (i) K-Race or (ii) K-Bar-Diverge or (iii)

103

K-Bar-Err applies. In all cases, observe that the rule applies due to a particular pair of
threads, say s and t.

We will construct an abstract execution with respect to these threads that must lead
to error: thus yielding a contradiction. Suppose ρ = (Σ1, ss1), (Σ2, ss2), . . . , (Σn, ssn) is
the sequence of kernel states successively assumed by P during the erroneous execution
excluding the final K-Race or K-Bar-Diverge or K-Bar-Err step. We will show by
induction that there exists a sequence π(ρ) = A1, A2, . . . , An with Ai ∈ πs,t(Σi, ssi) for all
0 ≤ i ≤ n such that this sequence is stuttering equivalent to an execution of As,t(P) that
leads to error. That is, the concrete rules K-Step, K-Bar-Nop, K-Bar-Inv, K-Seq,
K-Cond, K-Loop, K-Done are replaced by A-Step, A-Bar-Nop, A-Bar-Inv, A-Seq,
A-Cond, A-Loop, A-Done, respectively. We allow stuttering due to the handling of
loops in our proof; ignoring them, temporarily, a proof sketch is:

Concrete trace ρ (Σ1, ss1)
K-Rule−−−−−→k (Σ2, ss2) →k · · · →k (Σn, ssn)

⇓ ⇓ ⇓
Abstract trace π(ρ) (T1, tt1)

A-Rule−−−−−→k (T2, tt2) →k · · · →k (Tn, ttn)

where we use ⇓ to denote the projection and K-Rule and A-Rule to denote a matching
pair of rules in the concrete and abstract trace. Because we have chosen s and t to be
the pair of threads that cause the error in (Σn, ssn) it follows that either (i) A-Race or
(ii) A-Bar-Diverge or (iii) A-Bar-Err applies to some (Tn, ttn) ∈ πs,t(Σn, ssn) and so
contradicts our initial assumption that no execution of As,t(P) leads to error.

The base case of the induction is straightforward. If (Σ1, ss1) is a valid (concrete) initial
state then any (T1, ss1) ∈ πs,t(Σ1, ss1) where we pick the same sequence of predicated
statements ss1 is also a valid abstract initial state.

For the step case we consider each non-error yielding rule in turn. We show that if
(Σi, ssi) →k (Σi+1, ssi+1) then either (i) the abstract trace follows exactly: there exists Ai

and Ai+1 such that Ai ∈ πs,t(Σi, ssi) and Ai+1 ∈ πs,t(Σi+1, ssi+1) and Ai →k Ai+1; or (ii)
stuttering holds: there exists Ai such that Ai ∈ πs,t(Σi, ssi) and Ai ∈ πs,t(Σi+1, ssi+1).
In the following, let (T, ssi) ∈ πs,t(Σi, ssi) and (T ′, ssi+1) ∈ πs,t(Σi+1, ssi+1) for the case
where the abstract trace follows exactly (the sequence of predicated statements is preserved
exactly by the projection).

• Case K-Step. The concrete transition can be matched by A-Step since there is
no race between any pair of distinct threads, including s and t employed by the
two-thread reduction. Furthermore, the state required by s and t in the abstract
transition is completely captured by T . We have T (s) = Σi(s) and T (t) = Σi(t) by

104

the definition of πs,t and hence the next thread states σs and σt of T ′ match those
of Σi+1.

• Case K-Bar-Nop. The concrete transition can be matched by A-Bar-Nop because
the premise ¬pΣi(t).l for all threads 0 ≤ t < n (from K-Bar-Nop) implies that the
predicate will not hold for s and t under the abstract execution. That is, ¬pT (s).l ∧
¬pT (t).l holds.

• Case K-Bar-Inv. Due to the top-level assumption that the execution As,t(P) is
error-free it must be the case that for all Σ ∈ γs,t(T) that JφKs,tΣ holds. In particular,
Σi ∈ γs,t(T) by the definition of γs,t and πs,t. It follows that T ′ is a valid choice of
abstract state because Σi+1 is simply Σi with the read and write sets of all threads
cleared.

• Case K-Seq. Straightforward as there are no rule premises. That is, T ′ = T ′.

• Case K-Cond. Similar to K-Seq.

• Case K-Loop. There are two subcases to consider:

1. At least one of s or t are enabled. That is, either (p∧ e)T (s).l or (p∧ e)T (t).l

holds. Then the concrete transition can be matched by A-Loop.

2. Both s or t are disabled. Then there must exist some thread r distinct from
s or t that is enabled (i.e., (p ∧ e)Σ(r).l). In this case the concrete transition
cannot be matched with an abstract transition. The threads s and t, employed
by the two-thread reduction, are both disabled so only A-Done applies. The
enabledness of thread r is not captured. In other words,

(Σi, ssi)
K-Loop−−−−−→k (Σi+1, ssi+1)

⇓
(Ti, ssi) ̸A-Loop−−−−−→k

We will show that there exists a natural number m such that the concrete
successor state (Σi+m, ssi+m) has ssi+m = ssi and K-Done applies. Call this
subsequence of concrete states (Σi, ssi), (Σi+1, ssi+1), . . . , (Σi+m, ssi+m) the in-
termediate states. We further show that (Ti, ssi) is a member of the projection

105

of all intermediate states. In other words,

(Σi, ssi)
K-Done−−−−−→k (Σi+1, ssi+1) →k · · · →k (Σi+m, ssi)

K-Done−−−−−→k

⇓ ⇓ ⇓
(Ti, ssi)

τ−→ (Ti, ssi)
τ−→ · · · τ−→ (Ti, ssi)

A-Done−−−−−→k

where we use τ−→ to denote the stuttering of the abstract trace. The stuttering
allows the concrete execution to continue until the correspondence between
traces can resume.

There is always such a state (Σi+m, ssi). First we note that an error cannot
occur during this stuttering. The error (at Σn) is caused by threads s and t

which we have explicitly chosen for the two-thread reduction. In the subsequent
concrete execution of the loop (which cannot be followed by the abstract exe-
cution) these threads are both disabled. By inspection of the concrete rules, we
see that it is not possible to error when the two threads causing the violation
are both disabled. If the error did in fact occur within the loop execution then
the choice of s and t would mean that at least one of s or t must be enabled
(giving subcase 1). That is, the error occurs beyond the completion of the loop.
Since the concrete execution is finite and ends in error it must be the case that
the concrete execution continues until the loop completes.

Now we show that (Ti, ssi) is a member of the projection of all intermediate
state. Because the execution is error-free (and in particular, race-free) the
remaining enabled threads are only at liberty to update unknown locations of
shared memory. So the state required by s and t in the abstract transition is
completely captured by Ti. Finally, every intermediate state has a sequence of
predicated statements whose suffix is ssi.

• Case K-Done. The concrete transition can be matched by A-Done because the
premise ¬(p ∧ e)Σ(t).l for all threads 0 ≤ t < n (from K-Done) implies that the
guard will not hold for s and t under the abstract execution.

4.3.4. Verification Method

We now outline a quantifier-free verification method based on the semantics and soundness
result of the previous section. The verification method is an extension of the GPUVerify
verification method [BCD+12] using race instrumentation and the two-thread reduction
using shared state abstraction. We extend the shared state abstraction to use barrier in-

106

variants by encoding the rules A-Bar-Err and A-Bar-Inv. The main technical difficulty
is eliminating the quantifiers used in these rules. The rules use quantifiers to (i) consider
all concretisations of the current abstract state when checking the barrier invariant and
(ii) selecting a successor state in which the barrier invariant holds for all pairs of distinct
threads. We consider each of these quantifiers in turn.

Concretisation The role of the forall quantifier in ∀ Σ ∈ γs,t(T) is to ensure that the
barrier invariant is checked with respect to all concretisations of the current abstract state
T . The essential idea for eliminating the quantifier is to ensure that the barrier invariant
is checked only with respect to known locations (preserved by the concretisation operator)
and independent of unknown locations. We consider two methods for achieving this.
The first method ensures that the truth of a barrier invariant is independent of unknown
locations, whereas our second method ensures that all locations used by a barrier invariant
are known.

Method 1, given in prior work [CDK+13], tracks unknown locations and translates
the barrier invariant so that any reference to an unknown location yields an arbitrary
value. A barrier invariant can only refer to a finite number of shared memory locations
because iexpr is quantifier-free. Let d be the largest number of syntactically distinct shared
memory expressions for any barrier invariant in a given kernel. We introduce d auxiliary
variables, u1, . . . , ud, which can track at most d unknown locations. At the start of kernel
execution and after every barrier we havoc these variables (set each variable to a non-
deterministic value) to reflect the fact that the known set is empty. After each access to
a shared memory location computed from an expression e under predicate p we insert a
statement assume(p ⇒

∧
1≤i≤d ui ̸= e). Implicitly, we have added the location computed

from e to the known set. For a barrier invariant φ, let e1, . . . , ef be the syntactically
distinct sub-expressions of φ that refer to the shared state, where f ≤ d. For ease of
explanation, assume for the moment that there is no nesting between these sub-expressions.
We now substitute every occurrence of sh[ei] in φ with an if-then-else expression ite(ei =
ui, ⋆, sh[ei]). This evaluates to sh[ei] unless ei is equal to the ith unknown location, in
which case the evaluation is non-deterministic. The barrier invariant φ′ is then checked
for the pair of threads under consideration. The transformation ensures that the truth of a
barrier invariant is independent of unknown shared locations. With nested sub-expressions
the substitution is applied recursively.

Method 2 ensures that all shared memory locations in a barrier invariant are known
and aborts if this is not the case. We introduce a new logging variable, notKnown, which
implicitly models the known set. At the start of kernel execution and after every barrier we

107

havoc notKnown to reflect the fact that the known set is empty. After each shared memory
access to a location computed from an expression e under predicate p we insert a statement
assume(p ⇒ notKnown ̸= e). Implicitly, we have added the location to the known set.
For a barrier invariant φ, let e1, . . . , ef be the syntactically distinct sub-expressions of
φ that refer to the shared state and q1, . . . , qf be the path condition paired with each
sub-expression. The path condition gives the condition under which its associated sub-
expression is evaluated: given the syntax tree of the barrier invariant the path condition
is the conjunction of conditions to reach the sub-expression. At the barrier, in addition to
checking φ, we also check that

∧
1≤i≤f qi ⇒ notKnown ̸= ei holds. That is, we ensure that

every sub-expression e (whose path condition is satisfied) is a member of the known set.
The path condition allows us to deal with conditions within the barrier invariant.

We demonstrate the difference between these methods for three simple kernels where A is
an array in shared memory and we assume the kernels are executed by n threads. Example
(a) is taken from our discussion of the necessity of known locations and is incorrect;
examples (b) and (c) are correct.

(a) (b) (c)
A[tid] = 0;
barrier(); // φ1

A[tid] = tid + 1;
barrier(); // φ2

A[tid] = tid;
barrier(); // φ3

A[n + 2*A[tid]] = tid;
barrier(); // φ4

if (tid % 2 == 0)
A[2*tid] = 0;

else
A[2*tid+1] = 1;

barrier(); // φ5

• φ1 ≜ A[tid] = 0

This invariant has sub-expression e1 = tid with the path condition q1 = true. Un-
der method 1, this becomes ite(tid = u1, ⋆, A[tid]) = 0. Method 2 keeps φ1 but
additionally checks that true ⇒ notKnown ̸= tid holds.

• φ2 ≜ tid ̸= 0 ∧ tid ̸= 0 ⇒ A[0] = 0.

This invariant incorrectly asserts that if the pair of threads under consideration does
not include thread 0 then A[0] = 0. Under method 1, this becomes tid ̸= 0 ∧ tid ̸=
0 ⇒ ite(0 = u1, ⋆, A[0]) = 0. Method 2 keeps φ2 but additionally checks that
true ⇒ notKnown ̸= 0 holds. Because location 0 is unknown (if the pair of threads
under consideration does not include thread 0) both methods cause an assertion
failure, as expected.

• φ3 ≜ A[tid] = tid

Similar to the treatment of φ1.

• φ4 ≜ A[n+ 2 · A[tid]] = tid

108

This invariant has nested sub-expressions e1 = n+ 2 · A[tid] and e2 = tid with path
conditions q1 = q2 = true. Under method 1, this becomes ite((n + 2 · ite(tid =

u2, ⋆, A[tid])) = u1, ⋆, A[n+2 ·ite(tid = u2, ⋆, A[tid])]) = tid by applying the substitu-
tion recursively. Method 2 keeps φ4 but additionally checks that true ⇒ notKnown ̸=
e1 ∧ true ⇒ notKnown ̸= e2. Because this barrier invariant only considers known lo-
cations both methods pass, as expected.

• φ5 ≜ ite(tid mod 2 = 0, A[2 · tid] = 0, A[2 · tid + 1] = 1)

This invariant has sub-expressions e1 = 2 ·tid and e2 = 2 ·tid+1 with path conditions
q1 = (tid mod 2 = 0) and q2 = ¬q1. Under method 1, this becomes ite(tid mod 2 =

0, ite(2 · tid = u1, ⋆, A[2 · tid]) = 0, ite(2 · tid+ 1 = u2, ⋆, A[2 · tid+ 1]) = 1). Method
2 keeps φ5 but additionally checks that q1 ⇒ notKnown ̸= e1 ∧ q2 ⇒ notKnown ̸= e2.

Successor State The role of the forall quantifier in ∀ 0 ≤ x ̸= y < n : JφKx,yΣ′ is to choose
a successor state where the barrier invariant holds for all pairs of distinct threads. This
entails assuming the barrier invariant for a quadratic number of pairs. We observe that it
is sound to weaken the assumption to only consider a subset of the pairs of distinct threads.
Therefore, the quantifier can be eliminated by accompanying each barrier invariant with
a set of instantiation expressions giving this subset explicitly. An instantiation expression
can be a function of the pair of threads under consideration. For example, to assume a
barrier invariant for the pair of threads under consideration and their immediate right
neighbours under wrap around we specify the set {(tid, tid), ((tid+1) mod n, (tid+1) mod
n)}.

In practice, we find that a small subset of distinct pairs is sufficient for verification to
succeed. For example, the simple data-dependent kernel of Section 4.1, can be verified
by assuming the barrier invariant for a single pair. In Section 4.4 we give instantiation
expressions for each barrier invariant of the Blelloch prescan.

Barrier Invariants and Loop Invariants We extend the syntax of loop invariants to
also refer to shared state in a similar fashion to barrier invariants (i.e., using expressions
of type iexpr). In this case, the loop invariant is established with respect to the pair of
threads under consideration. The essential difference between barrier invariants and loop
invariants is the state of shared memory after the barrier or loop head. Following a barrier
invariant, the successor state is free to assume the barrier invariant for all pairs of distinct
threads. This is not the case for a loop invariant because threads are not guaranteed to see
a consistent view of shared memory after reaching a loop head; only a barrier guarantees

109

this property. Hence, a loop invariant may only assume the invariant for the current pair
of threads under consideration and not all pairs.

4.3.5. Relation to Equality Abstraction

We now give a correspondence result that relates the results of this chapter with prior
work described in Chapter 2. We show that the abstract semantics where all barrier
invariants are replaced with the vacuous assertion true yields a minor refinement of the
equality abstraction. The rules for the abstract semantics under equality abstraction
require a change to A-Bar-Inv, which becomes A-Bar-Eq. We give our refinement of
the equality abstraction as the rule A-Bar-Known-Eq.

A-Bar-Eq
pT (s).l ∧ pT (t).l

T ′ = (sh′, (T (s).l, ∅, ∅), (T (t).l, ∅, ∅))

(T, (barrierφ, p)@ss) →k (T ′, ss)

A-Bar-Known-Eq
pT (s).l ∧ pT (t).l

∀ v ∈ knowns,t(T) : sh′(v) = T.sh(v)
T ′ = (sh′, (T (s).l, ∅, ∅), (T (t).l, ∅, ∅))

(T, (barrierφ, p)@ss) →k (T ′, ss)

The barrier invariant φ is ignored in both rules. Under A-Bar-Eq the sh′ of the successor
state T ′ is unconstrained [BCD+12]. Thus, each thread sees an arbitrary, but consistent,
view of shared state after each barrier. The refinement given by A-Bar-Known-Eq addi-
tionally preserves the known locations of T across the barrier. We refer to this refinement
as the known-equality abstraction. All other rules are imported directly except for the rule
A-Bar-Err (since barrier invariants are ignored under the equality abstraction).

The examples (c) and (d) of Figure 4.1, reproduced below, show the difference between
the equality and known-equality abstractions. Example (c) fails using the equality ab-
straction because shared state is set non-deterministically at the barrier. This example is
correct using the known-equality abstraction because the known location tid is preserved
across the barrier. Example (d) is similar except that the assertion checks the neighbouring
element under wrap around (assume there are n threads). In this case, the example fails
under the equality and known-equality abstractions but can be captured using a barrier
invariant.

Theorem 4.2 (Known-Equality Equivalence). Let P be a kernel executed by n threads.
Let P ′ be the kernel where every barrier invariant φ is replaced with true. The abstract
semantics of P ′ is equivalent to the abstract semantics under the known-equality abstrac-
tion.

110

(c) (d)
A[tid] = tid;
barrier();
v = tid;
assert(A[v] == v);

A[tid] = tid;
barrier();
v = (tid+1)%n;
assert(A[v] == v);

Figure 4.10.: Examples with differing results using the equality and known-equality ab-
stractions

Proof. The proof follows by showing that the rules A-Bar-Inv with φ = true and
A-Bar-Known-Eq are substitutable. That is, any chosen subsequent state T ′ from
either rule satisfies the other.

The subsequent state under A-Bar-Inv satisfies T ′ = αs,t(Σ′) where Σ′ ∈ γs,t(T). In
particular, the known locations of T are preserved but all other locations are arbitrary.
Additionally, because the barrier invariant is vacuous, the check JφKx,yΣ′ for all distinct
threads x and y also holds vacuously. It follows that the abstraction using A-Bar-Inv
yields exactly the same next state as A-Bar-Known-Eq.

This gives us the following hierarchy of shared state abstractions, from least refined to
most refined: adversarial, equality, known-equality and barrier invariants. Soundness is
preserved from less refined abstractions to more refined abstractions. That is, if a kernel
is correct with respect to a less refined abstraction (e.g., the adversarial abstraction) then
the kernel is correct with respect to a more refined abstraction (e.g., the known-equality
abstraction).

4.4. Barrier Invariants for Stream Compaction

We are now equipped to tackle the data-dependent stream compaction kernel of Figure 4.4.
We use a staged and modular verification strategy. The heart of the kernel is the Blelloch
prescan, which we outline into a separate procedure. We then prove that the Blelloch
prescan is (i) data race-free and (ii) satisfies a monotonic specification using staged veri-
fication. Finally, we use this specification in the outer stream compaction kernel to prove
race-freedom using modular verification. In this section, we focus our attention on prov-
ing the Blelloch prescan specification using barrier invariants. After introducing some
notation we give a set of barrier invariants and instantiation expressions that allow us
to capture the specification we require. We also discuss the formalisation of two further
prefix sum implementations using barrier invariants.

111

Preliminaries For presentation purposes we separate the idx array used by both the
upsweep and downsweep phases into two arrays: a sum array used in the tree reduction of
the upsweep and a prescan array used by the downsweep that will contain the expected
output of the prescan. This simplification can be avoided by introducing sum as a ghost
variable (an auxiliary variable used only for verification): the upsweep and downsweep
work over the same array and we take a snapshot of the array in-between the two loops
and store it in sum.

The specification we will prove is that the output is monotonic: for all threads s < t,
prescan[s] + flag[s] ≤ prescan[t].5 For unsigned (i.e., non-negative) inputs we can
use barrier invariants to prove this specification under the assumption that addition of
unsigned integers does not overflow. Without this assumption the specification does not
hold: for sufficiently large inputs, the additions performed during the prescan will overflow,
leading to unexpected results in the idx array, and thus erroneous accesses to the out array.
In applications, stream compaction is used under the implicit assumption that the inputs
will not lead to overflow, thus our assumption is pragmatic.

As discussed in Section 4.2, although the prescan works in-place over the same idx array,
we can view the upsweep and downsweep as working over a logical tree where we can
identify each iteration of the upsweep and downsweep by the value of the offset variable,
which gives the ‘distance’ between vertices at that depth of the tree. In Figure 4.11 we
show that a vertex of the tree can be specified as an (element, offset)-coordinate (x, θ)

using the predicate isvertex(x, θ) ≜ (x + 1) mod θ = 0. For example, (5, 2) is a vertex
as element x = 5 is updated when offset θ = 2, while (5, 4) is not a vertex. For each
element x we also give the binary encoding, which can be interpreted as the path from
the root to the element leaf vertex: use 0 to mean left and 1 to mean right and read from
most-to-least significant bit. For example, the path from the root to the leaf vertex 6, with
binary encoding 0b110, is right (1), right (1) and left (0). We use the indexing functions
ai(tid, θ) ≜ θ(2 · tid + 1) − 1 and bi(tid, θ) ≜ θ(2 · tid + 2) − 1, which give the indices of
the left and right child vertices for a thread tid at offset θ. For example, ai(1, 2) = 5 and
bi(1, 2) = 7 (see Figures 4.4(a) and (b)).

We note that the thread-private variables d and offset are used in both the upsweep
and downsweep loops and additionally are uniform between threads: all threads agree on
the value of these variables at each barrier. This property is encoded using the barrier
invariant d = d ∧ offset = offset and is important because the barrier invariants that
follow use the offset variable as a measure of progress of the upsweep and downsweep.

5As discussed in Section 4.2, this is a weaker specification implied by the full functional specification
(assuming given non-negative inputs) but is sufficient for showing race-freedom.

112

8

4

2

1

offset θ

element x 10 32 54 76

10 10 10 10

0 1 0 1

0 1

binary encoding 000 001 010 011 100 101 110 111

Figure 4.11.: Tree structure of the Blelloch algorithm for n = 8

GPUVerify infers such uniform invariants automatically using static analysis [BBC+14]
(see Section 3.3.3). The variable offset is always a power-of-two and ranges from 1 to n
in the upsweep loop and back from n to 1 in the downsweep loop.

4.4.1. Blelloch Prescan

We use barrier invariants to establish equalities between the shared arrays flag, sum and
prescan: the φus invariant, in the upsweep loop, gives equalities between elements of
flag and sum, while the φds invariant, in the downsweep loop, gives equalities between
elements of sum and prescan. Figure 4.12 gives the set of equalities given by the barrier
invariants for n = 8 at the end of their respective loops. The monotonic specification,
expressed as the invariant φspec for the final barrier, is then a combination of the relevant
equalities. For example, consider the case prescan[1] + flag[1] ≤ prescan[5]. By the
downsweep equalities for prescan[1] and prescan[5] we rewrite this as sum[0] + flag[1] ≤
sum[3] + sum[4]. Then, by the upsweep equalities and cancellations, this becomes 0 ≤
sum[2] + flag[3] + sum[4], which holds given unsigned (and thus non-negative) inputs.

Load Invariant The stream compaction kernel is defined over n threads, however, only
n/2 threads are required for the prescan. After a parallel test of each element using n

threads, we synchronise with a barrier so n/2 threads can continue with the prescan.

113

offset

1 2 4 8

sum[0] = flag[0]
sum[1] = flag[1] + sum[0]
sum[2] = flag[2]
sum[3] = flag[3] + sum[2] + sum[1]
sum[4] = flag[4]
sum[5] = flag[5] + sum[4]
sum[6] = flag[6]
sum[7] = flag[7] + sum[6] + sum[5] + sum[3]

prescan[0] = e
prescan[1] = sum[0]
prescan[2] = sum[1]
prescan[3] = sum[1] + sum[2]
prescan[4] = sum[3]
prescan[5] = sum[3] + sum[4]
prescan[6] = sum[3] + sum[5]
prescan[7] = sum[3] + sum[5] + sum[6]

Figure 4.12.: Upsweep and downsweep equalities for n = 8

There is no need to carry any property about shared state through this barrier, therefore,
φload ≜ true.

Upsweep Invariant The upsweep is a reduction working from the leaves of a tree up
to its root. At each iteration of the upsweep, each parent vertex is given the sum of its
left and right child vertices. The upsweep proceeds until the root of the tree contains the
full reduction and other elements form partial sums: each vertex of the tree will contain
the sum of the leaf vertices below it in the tree.

In Figure 4.11 we show the tree structure for the concrete case where n = 8 and we
shade right child vertices (for the moment, ignore the labels of each vertex, which will be
used in the downsweep). The upsweep loop has the loop invariant:

(d = 4 ∧ offset = 1)∨(d = 2 ∧ offset = 2)∨(d = 1 ∧ offset = 4)∨(d = 0 ∧ offset = 8)

where each conjunct characterises a loop iteration (and the last conjunct corresponds to
the final time the loop head is evaluated and the loop exits). By considering the state of
the array sum at the start of each iteration we can construct a barrier invariant φus for the
barrier inside the loop body. The columns of the upsweep table in Figure 4.12 summarise
the per-element equalities formed by the upsweep as the offset changes.

Informally, the summations of an element x at offset θ can be found by traversing the
tree from the vertex (x, θ) to the leaf vertex (x, 1) of the element: if a right child vertex
(x, θ′) is encountered the term sum[x − θ′] is added to the summation. Furthermore, an
index x − θ′ is a summation term if and only if isvertex(x, 2θ′) holds. This gives us the
following per-element invariant upsweep, which captures the state of any vertex (x, θ) of

114

the tree.
upsweep(x, θ) ≜ sum[x] = flag[x] +

∑
θ′∈{2j |0≤j<lg θ}

isvertex(x,2θ′)

sum[x− θ′] .

Using this per-element invariant, we define the barrier invariant φus by considering the
elements of sum known to a thread tid in each iteration of the upsweep loop with offset θ.
At loop entry, when offset = 1, each thread tid < n/2 knows about exactly two elements:
ai(tid, 1) and bi(tid, 1). In subsequent loop iterations we have an uneven distribution of
elements over threads as more threads become disabled while the upsweep proceeds. For
each previous offset value θ′(< θ), each thread tid < n/θ′ will continue to know about
its left child at that depth of the tree, i.e., ai(tid, θ′/2), because this vertex will have no
further summation terms. For the current offset value θ, each thread tid < n/θ, i.e.,
each thread active in the iteration of the upsweep just completed, will know about its left
and right vertices: ai(tid, θ/2) and bi(tid, θ/2). Thus φus is defined as

tid < n/2 ⇒ (upsweep(ai(tid, 1), 1) ∧ upsweep(bi(tid, 1), 1))

in the case θ = 1, and as∧
θ′∈{2i|1≤i≤lg θ}

(tid < n/θ′ ⇒ upsweep(ai(tid, θ′/2), θ))

∧ (tid < n/θ ⇒ upsweep(bi(tid, θ/2), θ))

otherwise.

Downsweep Invariant The downsweep combines the partial sums formed in the up-
sweep to give the expected prescan result. For presentation purposes we show the down-
sweep operating over an array prescan different from the array sum used in the upsweep,
where initially prescan[x] = sum[x] for all elements x.

The downsweep traverses the tree from the root to the leaves after clearing the root
with the identity element e. At each iteration of the downsweep, each vertex (i) copies its
value to its left child and (ii) sums its value with the old value of the left child into the
right child. Consequently, a vertex is only summed into when it is a right child; otherwise,
it receives the value of its parent vertex.

In Figure 4.13 we consider the concrete case where n = 8. We shade right child vertices
and label each vertex with the summation terms of each vertex after the downsweep has
processed that level of the tree. For example, the root (7, 8) is labelled with e to denote

115

e

e 3

e 1 3 3,5

e 0 1 1,2 3 3,4 3,5 3,5,6

8

4

2

1

offset θ

element x 10 32 54 76

10 10 10 10

0 1 0 1

0 1

binary encoding 000 001 010 011 100 101 110 111

Figure 4.13.: Tree structure of the Blelloch downsweep for n = 8. We shade right child
vertices. Each vertex (x, θ) is labelled with the summations formed as the
downsweep proceeds, where a, b, . . . denotes prescan[x] = sum[a]+sum[b]+· · ·
and e denotes the identity.

that it is equal to the identity (i.e., prescan[7] = e), when offset = 8.
At the next downsweep iteration, when offset = 4, only (7, 8) is a vertex. The vertex

copies its value e into its left child (3, 4) and sums this value with the previous value of
its left child, i.e., sum[7] + sum[3] = e+ sum[3] = sum[3], storing the result in its right child
(7, 4). In the figure, we write this summation by labelling the vertex (7, 4) with ‘3’.

In the next iteration, when offset = 2, vertex (7, 4) copies its value sum[3] into its left
child (5, 2) and sums this value with the previous value of its left child, i.e., prescan[7] +
sum[5] = sum[3] + sum[5] into its right child (7, 2). Hence, in the figure, the left (5, 2) and
right (7, 2) child vertices are respectively labelled ‘3’ and ‘3, 5’. The remaining vertices are
similarly computed.

Now consider the leaf vertices of the tree, which are the final output of the prescan.
Note that the number of terms in the summation for an element x is the number of right
child vertices in the path from the root vertex to the leaf vertex. For example, element 5

has two right child vertices on the path from the root vertex (7, 8) to its leaf vertex.
Informally, the summations of an element x at offset θ can be found by traversing the

tree from the vertex (x, θ) to the root and gathering terms: if a right child vertex (x′, θ′)

is encountered then add the term sum[x′ − θ′] to the summation. This observation leads

116

to the following invariant, which defines the elements of prescan in terms of the offset θ:

downsweep(x, θ) ≜ prescan[x] =

∑

θ′∈B(x,θ)

sum[y(x, θ′)] if isvertex(x, 2θ)

sum[x] otherwise

where B(x, θ) ≜ {2i | lg θ ≤ i < lgn ∧ bit(x, i) = 1} and y(x, θ′) ≜ x− θ′ +
∑

0≤j<lg θ′

bit(x,j)=0

2j .

We exploit the fact that the binary encoding of x can be interpreted as the path from
the root to the element leaf vertex (Figure 4.11). The function B(x, θ) considers the path
from the root to the current offset (lg θ ≤ i < lgn) and returns the set of offsets where the
path contains a right child vertex (bit(x, i) = 1).

Finally, we define the invariant φds by considering the elements of prescan accessed by
the thread tid in each iteration of the downsweep loop with offset θ:

φds ≜
∧

0≤i<lgn

(
tid < n/2i+1 ∧ θ ≥ ⌊2i/2⌋ ⇒ downsweep(ai(tid, 2i), θ)

)
∧

∧
0≤i<lgn

(
tid < n/2i+1 ∧ θ ▷◁ ⌊2i/2⌋ ⇒ downsweep(bi(tid, 2i), θ)

)
where ▷◁ is defined as ≥ if 2i = n/2, and as = otherwise.

Specification Invariant The result of the prescan is expressed in the final barrier
invariant:

φspec ≜ tid < tid ⇒ (prescan[tid] + flag[tid] ≤ prescan[tid])

This follows as a consequence of the equalities formed by φus and φds, i.e. at θ = n for
φus and θ = 0 for φds (i.e., Figure 4.12 for the concrete case where n = 8).

Barrier Invariant Instantiation As discussed in Section 4.3.4, our verification method
requires each barrier invariant to specify a set of instantiation expressions to eliminate the
quantifier for successor state selection. We give minimal instantiations for the Blelloch
barrier invariants where assuming the invariant for further threads does not add useful
information for verification.

• In the upsweep of Figure 4.5(a), we see at each iteration that a thread tid uses the
results produced by threads 2 · tid and 2 · tid + 1 from the previous iteration. For
example, thread 1 at offset 2 uses the sums formed by threads 2 and 3 when the

117

upsweep was at offset 1. Therefore, it suffices to instantiate φus for threads 2 · tid
and 2 · tid + 1 after the upsweep barrier.

• In the downsweep of Figure 4.5(b), we see at each iteration that a thread tid uses
the results produced by itself tid and thread tid/2 from the previous iteration. For
example, thread 1 at offset 2 uses the results formed by itself and thread 0. Therefore,
it suffices to instantiate φds for threads tid and tid/2 after the downsweep barrier.

• At the final barrier we prove the monotonic specification that we require for proving
race-freedom of the outer stream compaction kernel. This requires a re-instantiation
of the upsweep and downsweep barrier invariants, which we have carried through to
this point. We recall that the upsweep results in equalities between the elements
of flag and sum, while the downsweep results in equalities between the elements of
sum and prescan. Combining relevant equalities allows us to prove the monotonic
specification. We require a linear number of instantiations for the upsweep barrier
invariant {tid/2i | 0 < i < lgn} and a constant number of instantiations for the
downsweep barrier tid. The specification barrier itself requires tid and tid.

4.4.2. Brent-Kung Scan

We now consider a different prefix sum algorithm due to Brent and Kung [BK82]. Fig-
ure 4.14 presents an OpenCL kernel that computes a scan. Like the Blelloch prescan,
the Brent-Kung scan consists of an upsweep and downsweep phase, and satisfies the same
monotonic specification. In the same figure, we show the circuit representation of the
algorithm for n = 8 elements. There is a wire for each input, corresponding to the array
elements of flag, and data flows top-down through the diagram. Each node • adds its
two inputs and produces an output that passes downward and also optionally across the
circuit through a diagonal wire.

Upsweep Invariant The Brent-Kung upsweep matches the Blelloch upsweep so we
reuse the same upsweep barrier invariant.

Downsweep Invariant The downsweep combines the partial sums formed in the up-
sweep to give the expected scan result. Unlike the Blelloch downsweep, which operates
over a logical tree, the Brent-Kung downsweep operates over a logical forest of trees. We
show this in Figure 4.14 by highlighting the two trees of the downsweep: the first of height
1 and another of height 2. An element x resides in a tree of height h = ⌊lg(x + 1)⌋ and
the binary encoding of the h least significant bits of x+ 1 gives the path from the root to

118

__kernel void brentkung(
__local unsigned *idx, unsigned n) {

unsigned left, right;
unsigned tid = get_local_id(0);

// (a) upsweep
unsigned offset = 1;
for (unsigned d = n/2; d > 0; d /= 2) {

barrier(CLK_LOCAL_MEM_FENCE); // φus
if (tid < d) {
left = offset * (2 * tid + 1) - 1;
right = offset * (2 * tid + 2) - 1;
idx[right] += idx[left];

}
offset *= 2;

}

// (b) downsweep
for (unsigned d = 2; d < n; d *= 2) {

offset /= 2;
barrier(CLK_LOCAL_MEM_FENCE); // φbk-ds
if (tid < (d - 1)) {
left = (offset * (tid + 1)) - 1;
right = left + (offset / 2);
idx[right] += left[idx];

}
}

}

0 1 0 1 0 1

0 1

element x10 32 54 76

binary encoding
of x+1

001 010 011 100 101 110 111 1000

(a) upsweep

(b) downsweep

Figure 4.14.: Brent-Kung prefix sum kernel and circuit diagram for n = 8

119

the element leaf vertex using 0 to mean left and 1 to mean right. For example, the path
from the root to the leaf vertex 5, with binary encoding x + 1 = 6 = 0b110, is right (1)
and left (0), ignoring bits ≥ 2.

The downsweep updates an output exactly once or not at all. Similar to the Blelloch
downsweep, the summations of an element x can be found by traversing the tree from the
leaf vertex to the root and gathering a term for each right child vertex. This gives the
following per-element invariant, which defines the elements of scan in terms of the offset
θ:

bk-downsweep(x, θ) ≜ scan[x] =

sum[x] +

∑
θ′∈B(x)

sum[y(x, θ′)] if updated(x, θ)

sum[x] otherwise

where updated(x, θ) ≜
∨

θ′∈{2i|lg θ≤i<lgn} θ
′ < x ∧ isvertex(x− θ′, 2θ′) and B(x) ≜ {2i | 0 ≤

i < ⌊lg(x+ 1)⌋ ∧ bit(x+ 1, i)} and y(x, θ′) ≜ x−
∑

0≤j≤lg θ′

bit(x+1,j)

2j .

The function updated(x, θ) returns a Boolean depending on whether the element x has
been updated at this stage of the downsweep or not. An element x is updated at an offset
θ′ if (x, θ′) is a right child vertex; this is the case if the element x − θ′ is a vertex at the
previous offset 2θ′. The function B(x) gives the set of offsets where the path from the
leaf vertex to the root contains a right child vertex. We exploit the binary encoding of
x+ 1 to traverse the path and locate right child vertices. The function y(x, θ′) computes
the index of the left child vertex summed into the vertex. For example, for element 6

the function is evaluated with y(6, 2) and y(6, 4) to yield the summation terms sum[5] and
sum[3], respectively.

Using this per-element invariant, we define the barrier invariant φbk-ds by considering the
elements of scan accessed by the thread tid in each iteration of the downsweep loop with
offset θ. We use the indexing functions bk-ai(tid, θ) ≜ (θ(tid + 1)) − 1 and bk-bi(tid, θ) ≜
bk-ai(tid, θ) + θ/2. Table 4.1 gives the ownership of each element for the n = 8.

120

Table 4.1.: Brent-Kung downsweep thread assignment of elements for n = 8

Element x
offset θ 0 1 2 3 4 5 6 7

8 T0 T0 T1 T0 T2 T1 T3 T0
4 T0 T0 T1 T0 T2 T1 T3 T0
2 T0 T0 T1 T0 T2 T1 T3 T0

φbk-ds ≜
∧

1≤i<lgn

(
tid < n/2i ∧ θ > 2i ⇒ bk-downsweep(ai(tid, 2i−1), θ)

)
∧ tid = 0 ⇒ bk-downsweep(ai(tid, θ/2), θ)

∧ tid = 0 ⇒ bk-downsweep(bi(tid, n/2), θ)

∧
∧

1≤i<lgn

(
tid < (n/2i − 1) ∧ θ = 2i ⇒ bk-downsweep(bk-ai(tid, 2i), θ)

)
∧

∧
1≤i<lgn

(
tid < (n/2i − 1) ∧ θ = 2i ⇒ bk-downsweep(bk-bi(tid, 2i), θ)

)
Because the Brent-Kung downsweep does not update all elements of the output the

clauses of the barrier invariant involve elements carried over from the upsweep. This
accounts for the clauses defined using ai and bi. In particular, thread 0, which is involved
in all iterations of the downsweep retains ownership of the last element. The final clauses
using bk-ai and bk-bi model the thread assignment of the downsweep.

4.4.3. Kogge-Stone Scan

We consider one last prefix sum algorithm due to Kogge and Stone [KS73] (and also
attributed to Hillis and Steele [HS86]). Figure 4.15 presents an OpenCL kernel and circuit
representation of the algorithm for n = 8 elements. The algorithm takes lgn iterations
and adds elements from successively larger power-of-two offsets.

Initially, at offset 1, we have for each element x that idx[x] = flag[x] =
∑

x≤i≤x flag[i].
After the first iteration, at offset 2, each element x ≥ 1 has idx[x] =

∑
x−1≤i≤x flag[i].

After the second iteration, at offset 4, each element x ≥ 2 has idx[x] =
∑

x−3≤i≤x flag[i].
We observe that the algorithm always adds adjacent summation intervals: each addition
has the form

∑
a≤i≤b flag[i] +

∑
b+1≤c flag[i] =

∑
a≤c flag[i]. In general, we note the

121

__kernel void koggestone(
__local unsigned *idx, unsigned n) {

unsigned offset, temp;
unsigned tid = get_local_id(0);

for (offset = 1; offset < n; offset *= 2) {
if (tid >= offset) {
temp = idx[tid-offset];

}

barrier(CLK_LOCAL_MEM_FENCE); // φks1

if (tid >= offset) {
idx[tid] += temp;

}

barrier(CLK_LOCAL_MEM_FENCE); // φks2
}

}

Figure 4.15.: Kogge-Stone prefix sum kernel and circuit diagram for n = 8

following relationship between an element x and the offset θ:

idx[x] =

∑

0≤i≤x

flag[i] if x < θ∑
x−θ+1≤i≤x

flag[i] otherwise

Encoding this observation directly requires recursion to express the summation. The
barrier invariants of Blelloch and Brent-Kung avoided this by expressing summations over
the elements of idx (rather than the input flag). In these kernels an element of idx is
stable (not updated) after it has been used as in a summation. This is not the case for
Kogge-Stone. For example, idx[3] is summed with idx[5] at offset 2 but is subsequently
updated itself at offset 4.

We addressed this problem by applying an abstraction to the source code that allows our
observation to be encoded without recursion. We change the type of idx to representing
an abstract interval (a, b) denoting the summation

∑
a≤i≤b flag[i]. Addition of adjacent

intervals is defined as (a, b)⊕ (b+1, c) = (a, c). This allows us to rephrase our observation
using abstract intervals.

ks(x, θ) ≜ x < θ ⇒ idx[x] = (0, x)∧
x ≥ θ ⇒ idx[x] = (x− θ + 1, x)

We now use this invariant to define barrier invariants for the two barriers of the Kogge-

122

Stone implementation. The structure of these barrier invariants is straightforward com-
pared to the Blelloch or Brent-Kung barrier invariants. This is due to the use of our
abstraction and also the implementation choice to assigns a single thread to each element
for the duration of the kernel. In both the Blelloch and Brent-Kung kernels, the thread
assignment of elements changes as the kernel proceeds.

φks1 ≜ ks(tid, θ) ∧ temp = idx[tid − θ]

φks2 ≜ ks(tid, 2θ)

The specification proved using barrier invariants and the interval abstraction differs
from the monotonic specification proved for the Blelloch and Brent-Kung implementations.
Using the abstract interval, the scan (inclusive prefix sum) specification can be written as
idx[x] = (0, x) for all elements x. We call this the abstract specification to distinguish it
from the monotonic specification. We will revisit and further develop this abstraction in
Chapter 5.

4.5. Experimental Evaluation

We now evaluate the effectiveness of barrier invariants for precise reasoning for data-
dependent GPU kernels. The main findings of our experiments are:

• Modular verification of the data-dependent stream compaction kernel allows GPU-
Verify to scale to problem sizes up to 231 threads.

• Staged verification of the Blelloch prescan and Brent-Kung scan using barrier invari-
ants allows GPUVerify to prove a monotonic specification for problem sizes involving
hundreds of threads.

• Staged verification of the Kogge-Stone scan using barrier invariants and the interval
abstraction allows GPUVerify to prove an abstract specification for problem sizes
up to 231 threads.

We compare GPUVerify using barrier invariants against the GKLEE [LLS+12] and
GKLEEp [LLG12] tools. As discussed in Chapter 2, both tools are based on dynamic
symbolic execution [CDE08]. Although designed for bug-finding rather than verification
these tools can give brute-force verification guarantees by exhaustive path exploration.
We do not compare against KLEE-CL due to bugs in the tool; however, due to many
similarities between KLEE-CL and GKLEE, we expect that a comparison would will yield
similar results. We do not compare to GPUVerify without barrier invariants [BCD+12],

123

Table 4.2.: Modular verification of the stream compaction kernel
Number of Threads

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

GPUVerify 1.47 1.43 1.43 1.47 1.39 1.40 1.38 1.38 1.41 1.38 1.39 1.40 1.41 1.41
±0.04 ±0.01 ±0.05 ±0.04 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02

GKLEE 0.80 76.95 TO TO TO TO TO TO TO TO TO TO TO TO±0.08 ±0.27
GKLEEp 0.57 1.03 3.38 9.40 39.44 220.89 1838.71 TO TO TO TO TO TO TO±0.01 ±0.04 ±0.06 ±0.19 ±0.97 ±5.01 ±110.81

PUG [LG10] or Test Amplification [LGA+12] as they do not support reasoning about
data-dependent GPU kernels.

Experimental Setup All experiments were performed on a compute cluster using nodes
with Intel Xeon EP-2620 cores at 2 GHz with 16 GB RAM running RedHat Linux 6.3,
revision 2784 of Boogie and Z3 v4.3.1. We used a timeout of 3 hours for each experiment.

4.5.1. Modular Verification of Stream Compaction

Our first experiment compares the time taken by GPUVerify, GKLEE and GKLEEp for
establishing race-freedom of the stream compaction kernel where the prefix sum is replaced
with its monotonic specification. For GKLEE and GKLEEp, which do not support mod-
ular verification directly, we encoded the monotonic specification using a set of assume
commands. We varied the problem size for all power-of-two thread counts from 2 to 231.

Table 4.2 shows for each thread count up to 215 the time taken in seconds for analysis
with GPUVerify, GKLEE and GKLEEp. Times, in seconds, are averages over 10 runs,
and the variation (95% confidence interval using a two-tailed t-distribution) between runs
is also shown. Timeouts are indicated by ‘TO’. In all cases, the analysis with GPUVerify
succeeds in less than two seconds and this trend continues for all thread counts up to 232.
GKLEE is capable of analysis up to 8 threads before timeout occurs and GKLEEp scales
further to 256 threads within the experiment resource limits. That is, modular verification
allows GPUVerify to scale to problem sizes beyond the effective range of dynamic symbolic
execution.

4.5.2. Staged Verification of Blelloch and Brent-Kung

The correctness of the modular results rely on proving that the prefix sum implementation
satisfies the monotonic specification. Our second experiment compares the time taken by
GPUVerify and GKLEE for establishing the monotonic specification for the Blelloch and
Brent-Kung kernels. We do not compare against GKLEEp because we found that analysis

124

of the prefix sum kernels led to false positive reports of the monotonic postcondition
failing. This is because the parametric flow technique used by GKLEEp is a type of thread
reduction and therefore requires a form of shared state abstraction. GKLEE, which models
all threads without reductions, does not share this problem.

For stream compaction we require the prefix sum with the binary add operator with
identity 0. As discussed in Section 4.4, the monotonic specification does not hold in
the case of overflow. For our experiments with GPUVerify we defined a non-overflowing
add operator. To add two n-bit integers we zero-extend both operands and perform the
addition using n + 1 bits. We then assume that the top bit of the result is zero, which
restricts analysis to the case where no-overflow has occurred. Finally, we contract back to
n-bits and return the result. It was not possible to add similar support directly to GKLEE,
thus for our experiments with GKLEE we model bit-vector addition as saturating.

We varied the problem size for all power-of-two thread sizes from 2, until we hit a resource
limit. We verified the monotonic specification for three binary operators (addition, max
and bitwise-or) using three different bit-vector widths (8-, 16- and 32-bit integers). We
varied the binary operator because the prefix sum operation is defined over an associative
binary operator with an identity and the monotonic specification, with equivalent barrier
invariant, also holds for the max and bit-wise or operators, both with identity 0.

The graphs of Figure 4.16 show times for verifying (a) the Blelloch prescan and (b) the
Brent-Kung scan prefix sums for GPUVerify (data points with circles) and GKLEE (data
points with crosses). We vary the problem size, in terms of number of threads, across the
x-axis. We consider the binary operators for addition, max and bitwise-or (ADD, MAX
and OR) using 8-, 16- and 32- bit-vector widths (bv8, bv16 and bv32). For GPUVerify,
each data point is the total time to verify the kernel using a staged verification strategy:
i.e., the time to verify the implementation race-free plus the time to verify the monotonic
specification (with race checking disabled). For GKLEE, each data point is the time
taken for exhaustive path analysis. For each tool, absence of a data point indicates that
a timeout or memory limit was reached.

The results show that for both Blelloch and Brent-Kung with the addition and max
operators that GPUVerify scaled to larger problem sizes (tens of threads) than GKLEE,
although at smaller problem sizes the overhead of using barrier invariants was greater
than exhaustive path exploration. For the bitwise-or operator, both tools are capable of
reasoning to significantly larger problem sizes involving hundreds of threads. In four cases,
GKLEE is able to verify one larger thread configuration than GPUVerify.

125

G
P

U
V

er
if

y
G

K
L

E
E

A
D

D
M

A
X

O
R

A
D

D
M

A
X

O
R

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
16

2
4

11010
0

10
00T
O

8
16

2
4

32
64

32
2

4
8

12
8

25
6

16
51

2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
16

2
4

11010
0

10
00T
O

8
16

2
4

32
64

32
2

4
8

12
8

25
6

16
51

2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
16

2
4

11010
0

10
00T
O

8
16

2
4

32
64

32
2

4
8

12
8

25
6

16
51

2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds) 2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
16

2
4

11010
0

10
00T
O

8
16

2
4

32
64

32
2

4
8

12
8

25
6

16
51

2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
16

2
4

11010
0

10
00T
O

8
16

2
4

32
64

32
2

4
8

12
8

25
6

16
51

2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

(a
)

Bl
el

lo
ch

pr
es

ca
n

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
2

4

11010
0

10
00T
O

8
16

2
4

64
32

2
4

8
12

8
25

6
16

51
2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
2

4

11010
0

10
00T
O

8
16

2
4

64
32

2
4

8
12

8
25

6
16

51
2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
2

4

11010
0

10
00T
O

8
16

2
4

64
32

2
4

8
12

8
25

6
16

51
2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds) 2
4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
2

4

11010
0

10
00T
O

8
16

2
4

64
32

2
4

8
12

8
25

6
16

51
2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s
VerificationTime(seconds) 2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

16

8
2

4

11010
0

10
00T
O

8
2

4
64

32
2

4
8

12
8

25
6

16

8
2

4

11010
0

10
00T
O

8
16

2
4

64
32

2
4

8
12

8
25

6
16

51
2

A
D

D
M

A
X

O
R

bv
32

bv
16

bv
8

N
u

m
b

er
of

T
h

re
ad

s

VerificationTime(seconds)

(b
)

Br
en

t-
K

un
g

sc
an

Fi
gu

re
4.

16
.:

Ve
rifi

ca
tio

n
re

su
lts

fo
r

(a
)

Bl
el

lo
ch

an
d

(b
)

Br
en

t-
K

un
g

pr
efi

x
su

m
s

126

262521 21222 210 21323 27 21928 21424 22021829 217215 216211

Number of Threads

1

10

100

1000

TO

V
er

ifi
ca

ti
on

T
im

e
(s

ec
on

d
s)

GPUVerify GKLEE

Figure 4.17.: Verification results for Kogge-Stone prefix sum

4.5.3. Staged Verification of Kogge-Stone

This experiment uses barrier invariants and the interval abstraction to verify the abstract
specification of the Kogge-Stone scan kernel. Figure 4.17 shows times for verifying the
kernel for GPUVerify (data points with circles) and GKLEE (data points with crosses).

The graph shows that GPUVerify scales to problem sizes well beyond the range of
GKLEE. GPUVerify was able to verify the kernel up to 231 threads (the graph shows
results up to 220 threads) showing the scalability that can be achieved by combining the
two-thread reduction, barrier invariants and additional abstractions.

4.6. Related Work

Thread Contracts The work of thread contracts [KMM11] also addresses the problem
of race-freedom for data-parallel programs, including data-dependent programs, which the
paper identifies as parallelism using indirection arrays. In this approach the programmer
annotates the program with a coordination strategy: a logical description of the parts of
shared memory that an arbitrary thread will access. The key idea is that a coordination
strategy can be automatically checked, by translation into an SMT query, to see whether
the annotations imply race-freedom of the program. However, the paper does not address
the problem of ensuring that the coordination strategy itself is correct; that is, verify-
ing that the parallel program obeys its coordination strategy. Instead, this technique
uses runtime assertions, generated automatically from the coordination strategy, to test
whether the coordination strategy is correct. Barrier invariants can be seen as a type
of coordination strategy tailored for the analysis of GPU kernels. The main difference

127

between barrier invariants and thread contracts is that the verification method for barrier
invariants ensures the validity of each barrier invariant as well as using them to prove
race-freedom.

Collective Loop Invariants The work of collective loop invariants, introduced by Siegel
and Zirkel [SZ12], is concerned with generalising loop invariants to parallel programs. In
particular, for verifying MPI programs using symbolic execution. A collective loop in-
variant is an assertion defined over a set of processes P and a set of loop heads L. The
assertion must hold in any state where every process in P is at a loop head in L. Similar to
barrier invariants, collective loop invariants can establish properties over sets of processes
or threads. However, they are otherwise orthogonal: a barrier invariant captures shared
state properties when all threads in a GPU kernel synchronise at the same barrier; a col-
lective loop invariant captures state properties when processes synchronise (infrequently)
at (possibly distinct) loop heads.

Protocol Verification The CMP method [CMP04] (named after the authors) addresses
the problem of verifying cache coherence protocols. Under this method, a protocol for an
arbitrary number of processes is verified by model checking a system where a small number
of processes are modeled explicitly with an additional non-deterministic ‘other’ process.
The purpose of the ‘other’ process is to over-approximate the possible behaviours of the
processes not modeled explicitly. This is a form of reduction similar to the two-thread
reduction employed by GPUVerify where the ‘other’ process is analogous to the shared
state abstraction. In a similar fashion to coarser shared state abstractions the uncon-
strained behaviour of the ‘other’ process can lead to spurious errors. To avoid this, the
CMP method uses non-interference lemmas to refine the behaviour of the ‘other’ process.
Hence, at a high-level, non-interference lemmas can be seen as an analogous idea to bar-
rier invariants: a refinement of a coarse abstraction to avoid spurious errors. However,
in practice, the techniques differ due to their application domains: non-interference lem-
mas describe interaction sequences between processes that communicate through message
passing; whereas, barrier invariants capture properties of shared state in data-parallel
programs communicating through shared memory.

Permission-Based Separation Logic As discussed in Chapter 2, the application of
permission-based separation logic to GPU kernels [BHM14] allows a kernel to be annotated
with a specification that captures the assignment of read or write permissions to memory
locations on a per-thread basis. The soundness of the logic ensures that if a proof can be

128

written for the kernel (i.e., the kernel verifies) then the write permissions of all threads
are exclusive and hence the kernel is data race-free. In this verification technique, barriers
can be used to exchange permissions between threads using a barrier specification. For
example, a barrier specification can capture the wrap around exchange of permissions from
each thread to its neighbouring thread in example (d) of Figure 4.10. This is analogous
to the instantiation expressions required for barrier invariants.

4.7. Summary

Barrier invariants are a new shared state abstraction for addressing the problem of pre-
cise and scalable reasoning for data-dependent GPU kernels. The key feature of this
abstraction is the ability to precisely capture properties about shared state whilst retain-
ing scalability through the use of the two-thread reduction. We have demonstrated the
applicability of barrier invariants through a detailed study of stream compaction, where
barrier invariants enabled us to reason about three different prefix sum implementations
and prove their specifications.

129

5. The Interval of Summations:
Functional Correctness for Prefix
Sums

In this chapter we further develop the interval abstraction introduced in Chapter 4 for
the verification of the Kogge-Stone prefix sum. Motivated by the importance of prefix
sums as a parallel primitive, we extend out observation that the Kogge-Stone algorithm
uses adjacent intervals into a general result about all prefix sums. We introduce a new
abstraction, the interval of summations, that enables precise reasoning about prefix sums
and yields an automatic and highly-scalable verification method. The surprising result is
that the abstraction is an “exact fit” for this class of algorithm. All correct prefix sums
can be precisely captured by the abstraction. The main results of this chapter are:

• A soundness and completeness result showing that a sequential prefix sum implemen-
tation is correct for an array of length n if and only if the implementation computes
the correct result for a specific test case using the interval of summations.

• A verification method that uses this result to establish the correctness of a sequential
prefix sum implementation by running a single interval of summations test case
requiring O(n lgn) space for the input and output of the implementation.

• An extension of the abstraction and results for data-parallel prefix sum implemen-
tations.

• An experimental evaluation that applies our verification method to four distinct
data-parallel prefix sums showing that our verification method is automatic and
scales to all power-of-two problem sizes up to 220.

Relation to Published Work The core material in this chapter was published in
[CDK14].

130

Table 5.1.: Some applications of parallel prefix sums. Stream compaction requires an
exclusive prefix sum; the other applications employ inclusive prefix sums. The
carry operator and functional composition are examples of non-commutative
operators.

Prefix sum application Data-type Operator
Stream compaction [HSO07, BOA09] Int +
Sorting algorithms [HSO07, SHG09] Int +
Polynomial interpolation [EGK90] Float ∗a

Line-of-sight calculation [Ble93] Int max
Binary addition [LF80] pairs-of-bits carry operator ¢
Finite state machine simulation [LF80] transition functions function composition

aFloating point multiplication is not actually associative, but is often treated as such in applications
where some error can be tolerated.

5.1. Prefix Sums and Their Applications

The prefix sum operation, which computes the sums of all prefixes of an array, is a fun-
damental parallel primitive. In Chapter 4, we introduced prefix sums in the context of
stream compaction (Figure 4.3). In this application a group of threads coordinate to filter
an array with respect to some predicate and the prefix sum gives the index where each
thread must write to ensure a compacted output. This application of the prefix sum is
one of many. The utility of prefix sums extends to both hardware and software; we give
some examples in Table 5.1. In hardware, prefix sums were originally studied as circuits
for carry-propagation logic in adders [Skl60]. Well known circuits include prefix sums due
to Kogge and Stone [KS73], Ladner and Fischer [LF80], and Brent and Kung [BK82]. The
design space has been further explored by Sheeran [She11]. In software, Blelloch identifies
the prefix sum as “one of the simplest and most useful building blocks for parallel algo-
rithms” and lists 13 applications including string comparison, polynomial evaluation and
recurrence relation solving [Ble93]. The prefix sum is found in all GPU data-parallel prim-
itive libraries, including the Thrust Parallel Algorithms Library, the CUDA Data-Parallel
Primitives Library and the OpenCL Data-Parallel Primitives Library.1

Example: Binary Addition In digital logic, a full-adder sums two 1-bit operands with
a carry-in to produce a pair of sum and carry-out bits. If the two operands are bits a and
b with carry-in bit c then the sum s and carry-out c′ can be defined as s ≜ a⊕ b⊕ c and

1See http://thrust.github.io, http://cudpp.github.io and https://code.google.com/p/clpp/

131

http://thrust.github.io
http://cudpp.github.io
https://code.google.com/p/clpp/

c′ ≜ (a · b) ⊕ (c · (a ⊕ b)) (in this sub-section we use ⊕ to denote exclusive-or and write
x · y to denote the bitwise-and of x and y). By combining multiple full-adders we can add
n-bit operands using a full-adder for each bit of the addition. If the carry is propagated
through the circuit by passing the carry-out of each full-adder into the carry-in of the
next full-adder then we have a ripple-carry adder (Figure 5.1(a) where ‘FA’ denotes a
full-adder). In a ripple-carry adder the critical path is the length of the carry chain.

A carry-lookahead adder avoids a carry chain by computing the carry-out for each full-
adder in parallel. One method for achieving this is an inclusive prefix sum. We modify each
full-adder to produce a pair of propagate and generate bits (pi, gi) ≜ (ai ⊕ bi, ai · bi). The
propagate bit means that the carry-out of the full-adder is conditional on the carry-in (the
carry-out should be set if the carry-in is set) whereas the generate bit means that the carry-
out is unconditional (the carry-out is always set). The prefix sum of the propagate-generate
bits with respect to the carry operator (pi−1, gi−1) ¢ (pi, gi) ≜ (pi·pi−1, gi⊕(pi·gi−1)) results
in a combined pair-of-bits (p′i, g

′
i) for each full-adder. The carry operator is associative

and non-commutative with identity (1, 0). For example, the 4-bit carry-lookahead logic in
Figure 5.1(b) will produce:

p′0, g
′
0 = p0, g0

p′1, g
′
1 = p1 · p0, g1 ⊕ p1 · g0

p′2, g
′
2 = p2 · p1 · p0, g2 ⊕ p2 · g1 ⊕ p2 · p1 · g0

p′3, g
′
3 = p3 · p2 · p1 · p0, g3 ⊕ p3 · g2 ⊕ p3 · p2 · g1 ⊕ p3 · p2 · p1 · g0

Intuitively, the combined propagation bit p′i means that the initial carry-in c0 propagates
through the full-adder intact whereas the combined generate bit g′i means that the carry-
out should be set unconditionally. Thus the result of each full-adder can be computed in
two further parallel steps. The carry out for each full-adder i > 0 is ci ≜ g′i−1 ⊕ (p′i−1 · c0)
and the sum of each full-adder is si ≜ pi⊕ci. Note that the sum uses the original propagate
bit p rather than the combined bit p′ resulting from the prefix sum.

Definition We now formally define the prefix sum operation, which we also discussed
in the previous chapter. For convenience we repeat the definition here. Let S be a set
with an associative binary operator ⊕. That is, (S,⊕) is a semigroup. Then the inclusive
prefix sum of an array [s1, s2, . . . , sn] of elements of S is the array:

[s1, s1 ⊕ s2, . . . , s1 ⊕ s2 ⊕ · · · ⊕ sn]

of all sums of inclusive prefixes, in increasing order of length.

132

a0 b0

c0

s0

FA

a1 b1

s1

FA

a2 b2

s2

FA

a3 b3

s3

FA
c4

a0 b0

c0

s0

FA

a1 b1

s1

FA

a2 b2

s2

FA

a3 b3

s3

FA

c4 Carry Lookahead

pg3 pg2 pg1 pg0

c1c2c3

c1c2c3

(a) Ripple-carry adder

(b) Carry-Lookahead adder

Figure 5.1.: 4-bit ripple-carry and carry-lookahead adders

133

If (S,⊕) has an identity element 1 (so that (S,⊕) is a monoid) then the exclusive prefix
sum of [s1, s2, . . . , sn] is the array:

[1, s1, s1 ⊕ s2, . . . , s1 ⊕ s2 ⊕ · · · ⊕ sn−1]

of all sums of exclusive prefixes.
For example, if S is the set of integers under addition with identity 0 then the inclu-

sive and exclusive prefix sum of the array [3, 1, 7, 0, 4, 1, 6, 3] is [3, 4, 11, 11, 15, 16, 22, 25]

and [0, 3, 4, 11, 11, 15, 16, 22], respectively. The inclusive and exclusive prefix sum can be
computed from one another. The inclusive prefix sum can be formed by computing the
exclusive prefix sum and then shifting the elements left by one and inserting the reduction
of the input. Similarly, the exclusive prefix sum can be formed by computing the inclusive
prefix sum and then shifting the elements right by one and inserting the identity.

The Interval of Summations The interval of summations abstraction is a tailored
abstraction for reasoning about prefix sums. The key insight that we exploit is the obser-
vation that a prefix sum is defined only for an associative binary operator. For two indices
i < j, the interval of summations uses the abstract interval (i, j) to represent a contiguous
summation interval of input elements si ⊕ si+1 ⊕ · · · ⊕ sj (with respect to any data type
and associative operator ⊕). Two abstract intervals can only be added together if they
are adjacent or ‘kiss’: the abstract sum of (i, j) and (k, l) is (i, l) if j + 1 = k; otherwise,
the result is a special value ⊤ that represents all non-contiguous sums. Any abstract sum
involving ⊤ yields ⊤, modeling the fact that using only associativity it is impossible to
create a contiguous summation interval from a non-contiguous interval using addition.

We will prove that the interval of summations is a sound and complete abstraction
for prefix sums (Section 5.2.5). Furthermore, this result enables a sound hybrid verifica-
tion method for data-parallel prefix sums (Section 5.4). Similar to the test amplification
work [LGA+12] discussed in Section 2.2.3, we show that a single dynamic run (using the
interval of summations) is sufficient for establishing the correctness of a prefix sum imple-
mentation of a given length n. We can test a generic prefix sum implementation (defined
over all monoids) using an interval of summations input [(0, 0), (1, 1), (2, 2) . . . (n−1, n−1)]

of length n and checking that the output matches [(0, 0), (0, 1), (0, 2), . . . , (0, n−1)] (for an
inclusive prefix sum). In this case, the input can be regarded as a concrete input. Infor-
mally, each (i, i) of the input is an abstract representation of any element si of any monoid
and each (0, i) of the output is an abstract representation of the expected summation for
any monoid. Hence, because of the soundness and completenesss result proved in this

134

program ::= vars: decl;
main: stmts;

decl ::= name : type
| arrayname : type[]
| decl ; decl

stmts ::= ε
| stmt ; stmts

stmt ::= name := expr
| arrayname[expr] := expr
| if (expr) then {stmts} else {stmts}
| while (expr) do {stmts}

expr ::= constant literal
| name
| arrayname[expr]
| expr op expr

Figure 5.2.: Syntax for a simple sequential imperative language

chapter, this is sufficient to prove the correctness of the prefix sum implementation for all
other monoids. Another interpretation of this result2 is that given a prefix sum instan-
tiated for some specific operator (e.g., integer addition) the interval of summations gives
an efficient abstraction for symbolic execution. In this case, the input can be regarded as
a symbolic input. Both views are compatible.

5.2. Sequential Setting

We begin by developing the interval of summations in the context of a sequential imperative
language, which leads to our main soundness and completeness result. We then extend this
result to data-parallel prefix sums yielding an automatic and highly-scalable verification
method, which we evaluate in Section 5.5.

5.2.1. Syntax

Figure 5.2 gives the syntax for a simple typed imperative language. A program consists
of a list of type declarations and a sequence of statements, which is the body of the pro-
gram. The sets name and arrayname denote the scalar and array variables of the program,
respectively. This syntactically eliminates nested array declarations and expressions (e.g.,
A[B[e]]). Statements can be combined in conditionals and loops.

2Thanks to Mike Dodds for this view.

135

c of type T
Γ ⊢ c : T

(T-Literal)
v : T ∈ Γ

Γ ⊢ v : T
(T-Variable)

A : Array(T) ∈ Γ Γ ⊢ e : Int
Γ ⊢ A[e] : T

(T-Array)

op of type T1 × T2 → T3 Γ ⊢ e1 : T1 Γ ⊢ e2 : T2
Γ ⊢ e1 op e2 : T3

(T-Op)

v : T ∈ Γ Γ ⊢ e : T
Γ ⊢ v := e : Unit

(T-Assign)

A : Array(T) ∈ Γ Γ ⊢ e1 : Int Γ ⊢ e2 : T
A[e1] := e2 : Unit

(T-Array-Assign)

Γ ⊢ e : Bool Γ ⊢ ss1 : Unit Γ ⊢ ss2 : Unit
Γ ⊢ if (e) then {ss1} else {ss2} : Unit

(T-Ite)

Γ ⊢ e : Bool Γ ⊢ ss : Unit
Γ ⊢ while (e) do {ss} : Unit

(T-Loop)
Γ ⊢ ε : Unit

(T-Empty)

Γ ⊢ s : Unit Γ ⊢ ss : Unit
Γ ⊢ s; ss : Unit

(T-Seq)

Figure 5.3.: Typing rules for expressions and statements

5.2.2. Typing

Figure 5.3 gives typing rules for the language. The rules are straightforward. We use c to
range over constant literal values, v to range over scalar variables, A to range over array
variables and op to range over an unspecified set of binary operators. We assume a set of
base types T , ranged over by T , which includes at least the integers and Booleans (denoted
Int and Bool) and the single-element type Unit. Constant literal and scalar variable types
are drawn from T . Array variables have type Array(T) which denotes all maps of type
Int → T . For ease of presentation we assume no out-of-bounds errors occur and we do not
allow arrays of arrays. The typing rules ensure that only Boolean valued expressions are
used in conditionals and only integer valued expressions are used as array indices.

136

5.2.3. Semantics

Let P be a program. A program state S for P is a tuple:

(σv, σA, ss)

where σv : name →
⊎

T∈T T is the mapping of scalar variables to values such that if
v ∈ name is of type T then σv(v) is of type T ; and σA : arrayname →

⊎
T∈T Array(T) is

the mapping of array variables such that if A ∈ arrayname is of type Array(T) then σA(A)

is of type Array(T); and ss is an ordered sequence of statements. The disjoint union of all
base types is given by

⊎
T∈T T . The set of all program states is denoted State. An initial

state of P is a program state (σv, σA, ss) where ss is the body of the program (declared
using main : ss).

The valuation of an expression with respect to a variable store σv and array store σA is
defined inductively.

Jconstant literalKσv
σA = constant literalJnameKσv
σA = σv(name)Jarrayname[expr]Kσv
σA = σA(arrayname)(JexprKσv

σA)Jexpr1 op expr2Kσv
σA = Jexpr1Kσv

σA op Jexpr2Kσv
σA

The rules of Figure 5.4 define the evolution of a program state. We write ss1·ss2 to denote
the concatenation of sequences of statements ss1 and ss2. The rules are straightforward
except for the split of the program store into a (scalar) variable and array store. This split
is not strictly necessary here but anticipates the extension to a data-parallel semantics
where we will regard variables as thread-private and arrays as shared among all threads.

Given an initial state S0 of P , an execution of P is a finite or infinite sequence of program
states:

S0 →s S1 →s · · · →s Si →s Si+1 →s · · ·

We will use S →+
s S ′ to denote the transitive closure of the relation →s. An execution

is maximal if it (i) cannot be extended by applying one of the rules of the operational
semantics or (ii) is infinite. We say P terminates for an initial state S if all maximal
executions starting from S are finite. For our sequential semantics a maximal execution
is unique because execution is deterministic; this will not be the case when we extend out
results to a data-parallel setting.

The proofs for progress and preservation [Pie02, sec. 8.3] are standard. Type preser-

137

vation for expressions tells us that if e : T then JeKσv
σA : T ; this is straightforward by

induction on the structure of e. Then type safety for statements follows by induction on
the structure of stmt.

Theorem 5.1 (seq) (Progress and Preservation). Let σv be a variable store and σA be
an array store and ss : Unit be a well-typed sequence of statements. Then ss is either a
value (a sequence of statements that cannot be further reduced: i.e., the empty sequence)
or (σv, σA, ss) →s (σ′v, σ

′
A, ss′) with ss′ a well-typed sequence of statements (of type Unit).

Proof. By induction on the structure of ss. If ss is the empty sequence ε then the result is
immediate since T-Empty ensures that ε : Unit. Otherwise, ss = s; ss′′ for some statement
s and statement sequence ss′′. By T-Seq, we know that s : Unit and ss′′ : Unit are well-
typed. We consider each case of s and show that in all cases the resulting ss′ of the next
program state is well-typed.

• Case s = v := e. Then S-Assign applies and ss′ = ss′′.

• Case s = A[e1] := e2. Then S-Array-Assign applies and ss′ = ss′′.

• Case s = if (e) then {ss1} else {ss2}. By T-Ite, we have e : Bool, ss1 : Unit and
ss2 : Unit. Using type preservation for expressions we have JeKσv

σA : Bool so either
S-Ite-T or S-Ite-F applies. Therefore, either ss′ = ss1 · ss′′ or ss′ = ss2 · ss′′. In
each case, by T-Seq, we know that ss′ has type Unit.

• Case s = while (e) do {ss1}. Then by T-Loop we have e : Bool and ss1 : Unit.
Using type preservation for expressions we have JeKσv

σA : Bool so either S-Loop-T or
S-Loop-F applies. Therefore, either ss′ = ss1 · ss′′ (in which case, by T-Seq, we
know that ss′ has type Unit) or ss′ = ss′′ (in which case it is immediate that ss′ has
type Unit).

Prefix Sum Algorithms We now define what it means for a program in our language
to implement a prefix sum algorithm. As discussed earlier, an inclusive and exclusive
prefix sum is defined with respect to a semigroup and monoid, respectively. Because most
prefix sums of interest in practice are over monoids (all applications in Table 5.1 are over
monoids) we focus on this case. It is straightforward to restrict the results we present over
monoids to semigroups. We write M to refer to a monoid with elements SM ∈ T , binary
operator ⊕M (assumed to be a programming language operator) and identity 1M ∈ SM .
All monoids satisfy the following properties:

138

S-Assign
σ′v = σv[v 7→ JeKσv

σA]

(σv, σA, v := e; ss′) →s (σ
′
v, σA, ss′)

S-ArrayJe1Kσv
σA = m A′ = σA(A)[m 7→ Je2Kσv

σA] σ′A = σA[A 7→ A′]

(σv, σA, A[e1] := e2; ss′) →s (σv, σ
′
A, ss′)

S-Ite-T JeKσv
σA

(σv, σA, if (e) then {ss1} else {ss2}; ss′) →s (σv, σA, ss1 · ss′)

S-Ite-F
¬JeKσv

σA

(σv, σA, if (e) then {ss1} else {ss2}; ss′) →s (σv, σA, ss2 · ss′)

S-Loop-T JeKσv
σA

(σv, σA,while (e) do {ss}; ss′) →s (σv, σA, ss · while (e) do {ss}; ss′)

S-Loop-F
¬JeKσv

σA

(σv, σA,while (e) do {ss}; ss′) →s (σv, σA, ss′)

Figure 5.4.: Operational semantics of our sequential programming language

139

• For all x, y ∈ SM we have x⊕M y ∈ SM (Closure)

• For all x, y, z ∈ SM we have x⊕M (y ⊕M z) = (x⊕M y)⊕M z (Associativity)

• For all m ∈ SM we have m⊕M 1M = 1M ⊕M m = m (Identity)

Additionally, we say a variable v, respectively an array A, is read-only in P if no assignment
of the form v := · · · , respectively A[e] := · · · , occurs in P .

Definition 1. Let M be a monoid, P a program, n a natural number and in, out arrays
of type Array(SM) such that in is read-only in P . The program P computes an M -prefix
sum of length n from in to out for an initial state S if P terminates for S and for each
final array store σA we have σA(out)(k) =

⊕
M, 0≤i≤k σA(in)(i) for all 0 ≤ k < n.

The program P implements an M -prefix sum of length n from in to out if P computes
an M -prefix sum of length n from in to out for every initial state.

The definitions for the computation and implementation of an exclusive prefix sum are
defined analogously. We can establish whether a program computes a prefix sum for a given
input by running the program. However, determining whether a program implements a
prefix sum is equivalent to functional verification. A program implements a prefix sum if
it computes the expected result for all monoids.

Generic Prefix Sums We now extend our programming language with a fresh generic
type SX , a new operator ⊕X : SX ×SX → SX , and a distinguished literal value 1X of type
SX . The intention of this generic type is to model an arbitrary monoid X = (SX ,⊕X)

with identity 1X . Because our generic type is fresh there are no operators that can
convert elements of type SX into other program types; the only valid operator on values
of this type is ⊕X . In particular, because of the typing rules, it is impossible to use
constants or variables of type SX as conditions (Boolean expressions) or array indices
(integer expressions). Even equality testing for values of SX is impossible.

A program that uses SX is a generic program. A generic program cannot be executed
directly. Instead, it must first be instantiated with respect to a specific type in a similar
fashion to a generic method in Java or a templated method in C++.

Definition 2. Let P be a generic program and M a monoid. We write P [M] to denote the
program that is identical to P except that every occurrence of SX , ⊕X and 1X is replaced
with SM , ⊕M and 1M , respectively. We refer to the process of obtaining P [M] from P as
a monoid substitution.

140

Figure 5.5 gives the formal rules for monoid substitution. The substitution is defined
recursively over the structure of the program. Since it is impossible for elements of SX to
appear in Boolean expressions or array indexing expressions we omit these cases from the
recursion. Let P be a generic program and M a monoid. If P is well-typed then P [M]

is also a well-typed program. This follows by induction on the structure of P using the
typing rules and the definition of monoid substitution.

There is a capturing problem if M already occurs in P prior to the monoid substitution.
In this case, we cannot distinguish between uses of M that were already present in P or
introduced through the substitution. We handle this problem by choosing a monoid M ′

isomorphic to M such that M ′ does not occur in P . We then define P [M] to be P [M ′].
For ease of presentation, we still refer to the monoid M ′ as M . For example, consider the
generic program P below and its monoid substitution using M = (Int,+) with identity
0. In this case (labelled P [Int]), we can no longer distinguish between the original integer
literal, variables and addition and those introduced by the monoid substitution. We avoid
this by substituting with respect to M ′ = (Int′,+′) with identity 0′ (labelled P [Int′]).
Avoiding this problem means that monoid substitution has a well-defined inverse. That is,
given an instantiated program, P [M] we can recover the original generic program P . We
will require this property in our proof of soundness and completeness in order to relate a
generic program instantiated with an arbitrary monoid M with the instantiation of the
program using the interval of summations.

P P [Int] P [Int′]
vars:
A : SX[];
v : SX; w : SX;
n : Int; m : Int;

main:
n := 0;
w := 1X;
m := n + 1;
v := A[m] ⊕X w;

vars:
A : Int[];
v : Int; w : Int;
n : Int; m : Int;

main:
n := 0;
w := 0;
m := n + 1;
v := A[m] + w;

vars:
A : Int′[];
v : Int′; w : Int′;
n : Int; m : Int;

main:
n := 0;
w := 0′;
m := n + 1;
v := A[m] +′ w;

Definition 3. Let P be a generic program and M a monoid. Then P implements a generic
prefix sum of length n if in and out are of type Array(SX) and for every monoid M , the
monoid substitution P [M] implements an M -prefix sum of length n.

The definition for the implementation of a generic exclusive prefix sum is defined anal-
ogously.

141

(vars : decl;main : stmts;)[M] = vars : decl[M];main : stmts[M];

(name : type)[M] =

{
name : SM if type is SX
name : type otherwise

(name : type[])[M] =

{
name : SM [] if type is SX
name : type[] otherwise

(decl; decl)[M] = decl[M]; decl[M]

(ε)[M] = ε

(s; ss)[M] = s[M]; ss[M]

(name := expr)[M] = name := expr[M]

(arrayname[expr] := expr)[M] = arrayname[expr] := expr[M]

(if (expr) then {stmts} else {stmts})[M] = if (expr) then {stmts[M]} else {stmts[M]}
(while (expr) do {stmts})[M] = while (expr) do {stmts[M]}

(constant literal)[M] =

{
1M if the literal is 1X

constant literal otherwise
(name)[M] = name

(arrayname[expr])[M] = arrayname[expr]

(expr op expr)[M] =

{
expr[M]⊕M expr[M] if op is ⊕X

expr op expr otherwise

Figure 5.5.: Monoid substitution: these rules instantiate a generic program using SX with
respect to a monoid M to yield an executable program

142

5.2.4. The Interval of Summations

We now formalise the observation that a correct generic prefix sum can only work by
combining contiguous summation intervals. Our key insight is that a generic prefix sum
can only rely on the properties of a monoid: closure, associativity and the existence of an
identity element. In particular, additional properties such as commutativity, idempotence
or distributivity with respect to another operator cannot be exploited.

We begin with an informal argument that this is the case. Consider a correct prefix sum
that does not combine contiguous summation intervals. Then at some point of the exe-
cution a summation is formed that is not a contiguous summation interval. For example,
there is a ‘gap’ in the summation (e.g., in[0]⊕in[2], missing in[1]) or an element is added
multiple times (e.g., in[0] ⊕ in[1] ⊕ in[1]). Assume that this non-contiguous summation
will be part of the final output of the prefix sum. Then since the prefix sum is correct the
non-contiguous summation must be made contiguous to meet the functional specification.
That is, the gap must be filled with the correct term or the element added multiple times
must be cancelled. For example, in[1] must be added in the middle of in[0] ⊕ in[2], or
in[1] must be cancelled from the right-hand side of in[0] ⊕ in[1] ⊕ in[1]. However, this
contradicts the assumption that the prefix sum is defined with respect to a monoid. For
example, filling the gap relies on the operator being commutative to reorder the terms into
the expected result (e.g., reordering in[0] ⊕ in[2] ⊕ in[1] into in[0] ⊕ in[1] ⊕ in[2]) and
canceling elements relies on every element of the monoid having an inverse. Therefore any
correct generic prefix sum relying only on the properties of a monoid must only combine
contiguous summation intervals.

This observation does not preclude prefix sums that exploit additional properties. For
example, a prefix sum defined with respect to a commutative monoid or a group. We are
aware of work by Sergeev that examines prefix sums that exploit the identity x⊕ y⊕ y =

x (such as the exclusive-or operator) and hence rely on a self-inverse property [Ser13].
However, we do not know of any further results that exploit richer properties. All prefix
sums that we have examined in GPU data-parallel primitive libraries are defined with
respect to a monoid.

Definition 4. The interval of summations monoid I has the elements

SI ≜ {(i1, i2) ∈ Int × Int | i1 ≤ i2} ∪ {1I ,⊤}

143

and a binary operator ⊕I defined by:

1I ⊕I x = x⊕I 1I = x for all x ∈ SI
⊤⊕I x = x⊕I ⊤ = ⊤ for all x ∈ SI

(i1, i2) ⊕I(i3, i4) =

(i1, i4) if i2 + 1 = i3

⊤ otherwise.

This operator allows us to combine summation intervals. Adding an empty summation
(to either side) of a summation interval has no effect. Contiguous summation intervals
can be joined into a larger interval. Finally, the treatment of ⊤ captures the informal
argument above: using only the properties of a monoid it is not possible to transform
a non-contiguous summation into a contiguous interval. Notice that ⊤ is an absorbing
element, or annihilating element of I: once a summation has become non-contiguous
there can be no return.

It is straightforward to check that I defines a monoid. For all x, y ∈ SI the binary
operation x⊕I y yields either 1I , ⊤ or an abstract interval (a, b) for some pair of integers
a, b. In all cases the result is a member of SI so closure is satisfied. For all x, y, z ∈ SI
we observe that associativity is satisfied by considering cases. If at least one of x, y, z is
⊤ then x⊕I (y ⊕I z) = (x⊕I y)⊕I z = ⊤ because ⊤ is an absorbing element. Otherwise,
if x = 1I then x⊕I (y ⊕I z) = 1I ⊕I (y ⊕I z) = y ⊕I z = (1I ⊕I y)⊕I z = (x⊕I y)⊕I z;
and this holds similarly if y or z is the identity. Finally, suppose x = (a, b), y = (c, d) and
z = (e, f). If b+1 ̸= c or d+1 ̸= e then at least one of the additions will yield ⊤ and hence
x⊕I (y ⊕I z) = (x⊕I y)⊕I z = ⊤. Otherwise we have x⊕I (y ⊕I z) = (a, b)⊕I ((c, d)⊕I

(e, f)) = (a, b)⊕I (c, f) = (a, f) = (a, d)⊕I (e, f) = ((a, b)⊕I (c, d))⊕I (e, f) = (x⊕I y)⊕I z.
Finally, the identity element 1I satisfies the identity property by definition.

We now define a condition on initial program states. For a given natural number n, the
singleton condition ensures that the first n elements of in are abstracted in the interval
monoid by appropriate singleton intervals. That is, the kth element of in should be
set to (k, k) which abstractly represents the value of in[k] under any monoid. All other
array elements and variables of type SI have values that are not known to be summation
intervals.

Definition 5 (Singleton condition for sequential programs). Let P be a generic program
with in of type Array(SX), σv be a variable store and σA be an array store. An initial state
of P [I] with variable store σv and array store σA satisfies the singleton condition for n if:

1. for all v of type SX in P we have σv(v) = ⊤; and

144

2. for all A of type Array(SX) in P and k ∈ Int,

σA(A)(k) =

(k, k) if A = in and k ∈ 0, . . . , n− 1

⊤ otherwise.

5.2.5. Soundness and Completeness

We are now equipped to state our main theorem formally. This theorem shows that the
interval monoid is a sound and complete abstraction for generic prefix sums: a program
implements a generic prefix sum (i.e., is functionally correct) if and only if it implements
a prefix sum when instantiated with the interval monoid. In fact, this theorem states a
stronger result because it only considers initial program states (of the interval monoid
instantiation) that satisfy the singleton condition rather than all initial program states.

Theorem 5.1 (seq). Let P be a generic program and n a natural number. Then,

P [I] computes an I-prefix sum of length n for every initial
state satisfying the singleton condition for n

⇐⇒
P implements a generic prefix sum of length n.

Our proof uses a simulation argument: given a generic program P we can simulate any
(concrete) execution of P [M] for any monoid M by an (abstract) execution of P [I], and
vice versa, whilst relating the states encountered in each of the executions. We begin by
formalising the relation between concrete and abstract array stores and then lifting this
to program states.

Definition 6 (Reification for array stores). Let M be a monoid. Let ArrayStore denote
the type of array stores. The reification function ReifyM : SI × ArrayStore → P(SM) is
defined as follows

ReifyM ((i1, i2), σA) = {
⊕

M, i1≤i≤i2
σA(in)(i)}

ReifyM (1I , σA) = {1M}

ReifyM (⊤, σA) = SM

That is, ReifyM maps an abstract summation of the interval monoid to the set con-
taining the corresponding concrete summation in the monoid M and maps an unknown
summation, represented by ⊤ in the interval monoid, to the full set of elements of M .

145

Definition 7 (Reification for program states). Let P be a generic program and M be a
monoid. Let StateP [M] and StateP [I] denote the set of all program states of P [M] and
P [I], respectively. Then

ReifyM : StateP [I] → P(StateP [M])

is defined by (σ′v, σ
′
A, ss′) ∈ ReifyM (σv, σA, ss) if and only if

• for all v of type T in P

σ′v(v) = σv(v) if T ̸= SX
σ′v(v) ∈ ReifyM (σv(v), σA) if T = SX

• for all A of type Array(T) in P and k ∈ Int

σ′A(A)(k) = σA(A)(k) if T ̸= SX
σ′A(A)(k) ∈ ReifyM (σA(A)(k), σA) if T = SX

• there exists a generic program Q such that ss = Q[I] and ss′ = Q[M].

We refer to the conditions imposed by these definitions on program states including
variable stores and array stores as the reify condition. As a final preparation for the
simulation proof we show that all non-generic expressions evaluate identically in concrete
and abstract program states related by reification.

Lemma 5.2 (seq). Let P be a generic program, M a monoid, SI = (σv, σA, ss) a program
state of P [I], SM = (σ′v, σ

′
A, ss′) ∈ ReifyM (SI) a program state of P [M], and e : T a well-

typed expression. If T ̸= SX then JeKσv
σA = JeKσ′

v
σ′

A
.

Proof. First, we observe that if the expression e is not of type SX then e is the same under
any monoid substitution. This is by induction on the structure of e and immediate by the
definition of monoid substitution where we note that: (i) in the case of a constant literal
that 1X is the only literal of type SX ; and (ii) in the case of a binary operation that op
cannot be ⊕X (since, by design, this is the only binary operator that yields a result of
type SX).

The proof now follows by induction on the structure of e. In the case of a constant literal
this is immediate by the definition of expression evaluation. In the case of a variable v
we have σ′v(v) = σv(v) by the definition of ReifyM when T ̸= SX . In the case of an

146

array expression A[e′] we have A : Array(T) and e′ : Int by T-Array. By the induction
hypothesis, Je′Kσv

σA = Je′Kσ′
v

σ′
A

; let us call this index m. Then, by the definition of ReifyM

when T ̸= SX we have σ′A(A)(m) = σA(A)(m). Finally, in the case of a binary operation
e1 op e2, since op cannot be ⊕X (by the argument used above) it must be the case that e1
and e2 are not of type SX and we apply the induction hypothesis to each side.

Simulation We now prove our simulation result.

Lemma 5.3 (seq) (one-step simulation). Let P be a generic program, M a monoid,
SI = (σv, σA, ss) a program state of P [I], and SM = (σ′v, σ

′
A, ss′) ∈ ReifyM (SI) a program

state of P [M]. Then,

• if SI →s S ′
I then there exists S ′

M ∈ ReifyM (S ′
I) of P [M] such that SM →s S ′

M , and

• if SM →s S ′
M then there exists S ′

I of P [I] such that SI →s S ′
I and S ′

M ∈ ReifyM (S ′
I).

Proof. Let Q be the generic program such that Q[I] = ss and Q[M] = ss′, the program
components of SI and SM , respectively. This is always possible by the renaming condition
on monoid substitution discussed above.

We begin by showing that whatever the form ofQ that the same rule from the operational
semantics applies in both SI and SM . If the first statement of Q is an assignment to a
variable or array then this is immediate. In the case of a conditional or loop with guard
e then by Lemma 5.2 (seq), since e : Bool, we have that e will evaluate identically in SI

and SM . Hence the same rule for conditional or loop execution applies.
It remains to show that the conditions on the stores of S ′

I and S ′
M are satisfied. If the

applied rule was one of S-Ite-T, S-Ite-F, S-Loop-T, S-Loop-F, this is immediate, as
the stores are identical before and after the steps.

For S-Assign, there are two cases to consider. Let v := e be the first statement of Q.
By T-Assign, both v and e are the same type T .

• If T is not of type SX in Q then, by Lemma 5.2 (seq), the expression e will evaluate
identically in SI and SM . Hence the updated variable stores in S ′

I and S ′
M satisfy

the reify condition.

• Otherwise, if T is of type SX in Q, then by the typing rules and associativity of ⊕X

the expression e must be of the form x0 ⊕X · · · ⊕X xk where each xi (for 0 ≤ i ≤ k)
is either (a) the identity element 1X , (b) a variable or (c) an array element.

By the assumption that the reify condition holds for SI and SM , (a) for each
xi = 1X we have 1M ∈ ReifyM (1I , σA), (b) for each variable v among xi we have

147

σ′v(v) ∈ ReifyM (σv(v), σA), and (c) for each A[e′] among xi we have σ′A(A)(m) ∈
ReifyM (σA(A)(m), σA) where m = Je′Kσv

σA = Je′Kσ′
v

σ′
A

(since the index expression e′

evaluates identically in SI and SM by Lemma 5.2 (seq)). Consider the resulting
summation JeKσv

σA under SI and JeKσ′
v

σ′
A

under SM . We must show that JeKσ′
v

σ′
A

∈
ReifyM (JeKσv

σA , σA).3 By the definition of ⊕I there are three cases:

1. Case JeKσv
σA = 1I if and only if all xi = 1X (for 0 ≤ i ≤ k). Hence Jσ′vKσ′

A
= 1M

and the reify condition holds.

2. Case JeKσv
σA = ⊤. In this case there must be some xi whose value under SI is

⊤ or some pair xi, xi+1 whose abstract intervals are not adjacent. Then the
reify condition holds trivially since ReifyM (⊤, σA) = SM and, by the property
of monoid closure, JeKσ′

v
σ′

A
∈ SM .

3. Case JeKσv
σA is an abstract interval. In this case, let us ignore occurrences of

identity elements since, by definition, they cannot affect the resulting summa-
tion. Then, every successive pair of terms xi, xi+1 (for 0 ≤ i ≤ k − 1) is a pair
of adjacent abstract intervals under SI that, by assumption, map to a concrete
(adjacent) summation interval under SM . Therefore, by the definition of ⊕I

and ⊕M , JeKσ′
v

σ′
A
∈ ReifyM (JeKσv

σA , σA), as required.

For S-Array, let A[e1] := e2 be the first statement of Q. By Lemma 5.2 (seq), the
indexing expression e1 evaluates identically in SI and SM . That is, the same array element
is updated by each application of the rule. There are two cases to consider, i.e., A is or is
not of type Array(SX) in Q. These cases are identical to those of S-Assign.

Lemma 5.4 (seq) (multiple-step simulation). Let P be a generic program, M a monoid,
and n a natural number. If SM is a program state of P [M] then

• there exists an initial state SI of P [I] satisfying the singleton condition for n such
that SM ∈ ReifyM (SI), and

• if SI →+
s S ′

I then there exists S ′
M ∈ ReifyM (S ′

I) of P [M] such that SM →+
s S ′

M , and

• if SM →+
s S ′

M then there exists S ′
I of P [I] such that SI →+

s S ′
I and S ′

M ∈ ReifyM (S ′
I).

Proof. Let SM = (σ′v, σ
′
A, P [M]) be an initial state of P [M]. The proof is by induction

on the number of steps where we apply Lemma 5.3 (seq) after first establishing that
an initial state SI of P [I] exists that satisfies the singleton condition for n such that
SM ∈ ReifyM (SI). Let SI = (σv, σA, P [I]) with

3Strictly we require the condition for σA of S ′
I , but since we require in to be read-only there is no

difference.

148

• for all v of type T in P ,

σv(v) =

σ′v(v) if T ̸= SX
⊤ if T = SX

• for all A of type Array(T) in P and k ∈ Int,

σA(A)(k) =

(k, k) if A = in and k ∈ {0, . . . , n− 1}

⊤ if A = in and k ̸∈ {0, . . . , n− 1}

⊤ if A ̸= in and T = SX
σ′A(A)(k) otherwise

That SI satisfies the singleton condition for n and that we have SM ∈ ReifyM (SI) is now
immediate.

Proof (Theorem 5.1 (seq)). The ⇐-direction is trivial because I is a monoid.
For the ⇒-direction, let M be a monoid and SM an initial state of P [M]. By Lemma 5.4

(seq) there exists an initial state SI of P [I] such that SI satisfies the singleton condition
and SM ∈ ReifyM (SI). All executions from SI are terminating because P [I] implements
an I-prefix sum. By Lemma 5.4 (seq), every terminating execution SI →+

s S ′
I has a

corresponding terminating execution SM →+
s S ′

M such that S ′
M ∈ ReifyM (S ′

I). Since
P [I] computes an I-prefix sum we have for the array store σA of S ′

I that σA(out)(k) =⊕
I, 0≤i≤k σA(in)(i) = (0, k) for all k ∈ {0, . . . , n−1}. Hence, by the definition of reification

for array stores yielding σ′A of S ′
M we have σ′A(out)(k) =

⊕
M, 0≤i≤k σA(in)(i) for all

k ∈ {0, . . . , n− 1}.

5.3. Data-Parallel Setting

We now extend our results to data-parallel programs, including GPU kernels, in which
multiple threads execute the same program and synchronise using barriers. We formalise
an interleaving semantics that follows the MPI programming model [GLS99] in which
threads can synchronise at syntactically distinct barriers.

5.3.1. Syntax, Typing and Semantics

Figure 5.6 extends the syntax of Figure 5.2 with a barrier synchronisation statement. We
highlight the differences from the sequential semantics. A data-parallel program addition-

149

program ::= vars: decl;
threads: Int;

main: stmts;
decl ::= name : type

| arrayname : type[]
| decl ; decl

stmts ::= ε
| stmt ; stmts

stmt ::= name := expr
| arrayname[expr] := expr
| if (expr) then {stmts} else {stmts}
| while (expr) do {stmts}
| barrier

expr ::= constant literal
| name
| arrayname[expr]
| expr op expr

Figure 5.6.: Syntax for a simple data-parallel language

ally declares the number of threads that will execute (threads: Int) the statement body.
The typing rule for barrier statements extends the rules of Figure 5.3.

Γ ⊢ barrier : Unit
(T-Barrier)

Let P be a program executed by N threads. Then the finite set of thread identifiers is
defined by D = {0, . . . , N − 1}. A data-parallel program state S for P is a tuple:

(σA,K)

where σA is an array store and K is a mapping of thread identifiers to (variable store,
sequence of statement)-pairs such that for each t ∈ D and variable store σv of K(t) we
have σv(tid) = t. The variable tid gives the identity of a thread and must occur read-only
in every program P . An initial state of P is a program state where K(t) = ss for every
t ∈ D and ss is the body of the program (declared using main : ss).

The rules of Figure 5.7 define the evolution of a data-parallel program state where →s

is the relation as defined in Figure 5.4. The semantics is an interleaving semantics (K-
Step) with barrier synchronisation (K-Barrier): threads can be scheduled in any order
but stall at barriers. The rule K-Step allows any thread to make individual forward
progress by executing a single statement, except in the case when the thread has reached
a barrier statement. In this case the thread stalls until K-Barrier holds, which ensures

150

K-Step
K(t) = (σv, ss) (σv, σA, ss) →s (σ

′
v, σ

′
A, ss′) K ′ = K[t 7→ (σ′v, ss′)]

(σA,K) →k (σ′A,K
′)

K-Barrier(
∀t : ∃σv :

∨ (∃ss :K(t) = (σv,barrier; ss)∧K ′(t) = (σv, ss))
(K(t) = (σv, ε) ∧K ′(t) = (σv, ε))

)
∃t, σv, ss : K(t) = (σv,barrier; ss)

(σA,K) →k (σA,K
′)

Figure 5.7.: Operational semantics of our kernel programming language, extending the
sequential rules of Figure 5.4

that every thread has either reached a barrier (not necessarily the same syntactic barrier)
or has terminated. Permitting synchronisation at syntactically distinct barriers is less
restrictive than the requirements for barrier synchronisation under CUDA and OpenCL,
which require that all threads must synchronise at the same syntactic barrier and further-
more, if the barrier is in a loop then every thread must reach the barrier having executed
the same number of loop iterations [BCD+12]. Proving our results in this more general
setting is simpler and means that our results are more widely applicable. It is straight-
forward to restrict our results to the stricter requirements of CUDA and OpenCL. The
terminating condition of K-Step models an implicit barrier at the end of each thread
execution. The additional condition that at least one thread has reached a barrier ensures
that K-Barrier and termination are mutually exclusive.

Given an initial state S0 of P , an execution of P is a finite or infinite sequence of program
states:

S0 →k S1 →k · · · →k Si →k Si+1 →k · · ·

We will use S →+
k S ′ to denote the transitive closure of the relation →k. The definitions

for maximal and terminating executions are defined as in the sequential setting. Due
to the non-deterministic choice of thread t in K-Step there may be multiple maximal
executions, contrary to the sequential setting.

Prefix Sums and Generic Prefix Sums The definition for computing and imple-
menting a prefix sum is defined as in the sequential case (Definition 1) with P interpreted
as a data-parallel program. To cater for generic data-parallel programs we extend monoid
substitution in Figure 5.8; the generic type does not affect barrier statements. A generic

151

(vars : decl; threads : number;main : stmts;)[M] = vars : decl[M];
threads : number;
main : stmts[M];

(barrier)[M] = barrier

Figure 5.8.: Extended monoid substitution rules

prefix sum is defined as in the sequential case (Definition 3) with P interpreted as a
data-parallel program.

Interval Monoid The definition for the interval of summations monoid (Definition 4)
is unchanged. We extend the singleton condition to data-parallel programs by taking into
account that there is now a variable store per thread; the condition for the array store is
the same as in the sequential case (Definition 5).

Definition 8 (Singleton condition for data-parallel programs). Let P be a generic data-
parallel program with in of type Array(SX), σv be a variable store and σA be an array
store. An initial state of (σA,K) of P [I] satisfies the singleton condition for n if:

1. for all t ∈ D and v of type SX in P we have σv(v) = ⊤ with σv the variable
store of K(t); and

2. for all A of type Array(SX) in P and k ∈ Int,

σA(A)(k) =

(k, k) if A = in and k ∈ 0, . . . , n− 1

⊤ otherwise.

5.3.2. Soundness and Completeness

The structure of our data-parallel results closely follows our sequential results. We re-
state the main soundness and completeness theorem for data-parallel programs and reuse
the same proof strategy, a simulation argument. The principal difference is catering for
multiple threads with separate variable store and statement components; this affects our
definition of reification for program states. Following this, adapting the lemmas used for
proving our main theorem is straightforward.

Theorem 5.1 (par). Let P be a generic data-parallel program and n a natural number.
Then,

152

P [I] computes an I-prefix sum of length n for every initial
state satisfying the singleton condition for n

⇐⇒
P implements a generic prefix sum of length n.

Definition 9 (Reification for data-parallel program states). Let P be a generic data-
parallel program and M be a monoid. Let us overload StateP [M] and StateP [I] to denote
the set of all data-parallel program states of P [M] and P [I], respectively. Then

ReifyM : StateP [I] → P(StateP [M])

is defined by (σ′A,K
′) ∈ ReifyM (σA,K) if and only if

• for all t ∈ D and v of type T in P , where σv and σ′v are the variable stores
of K(t) and K ′(t), respectively:

σ′v(v) = σv(v) if T ̸= SX
σ′v(v) ∈ ReifyM (σv(v), σA) if T = SX

• for all A of type Array(T) in P and k ∈ Int

σ′A(A)(k) = σA(A)(k) if T ̸= SX
σ′A(A)(k) ∈ ReifyM (σA(A)(k), σA) if T = SX

• for all t ∈ D, where ss and ss′ are the statements of K(t) and K ′(t), respec-
tively, there exists a generic program Q such that ss = Q[I] and ss′ = Q[M].

Lemma 5.2 (par). Let P be a generic data-parallel program, M a monoid, SI = (σA,K)

a program state of P [I], SM = (σ′A,K
′) ∈ ReifyM (SI) a program state of P [M], and e : T

a well-typed expression. For all t ∈ D, with σv and σ′v the variable stores of K(t) and
K ′(t), respectively, if T ̸= SX then JeKσv

σA = JeKσ′
v

σ′
A

.

Proof. The proof is by induction on the structure of e using the same observations as in
the sequential version of this lemma (Lemma 5.2 (seq)) and the data-parallel definition of
reification.

Lemma 5.3 (par) (one-step simulation). Let P be a generic data-parallel program, M
a monoid, SI = (σA,K) a program state of P [I], and SM = (σ′A,K

′) ∈ ReifyM (SI) a
program state of P [M]. Then,

153

• if SI →k S ′
I then there exists S ′

M ∈ ReifyM (S ′
I) of P [M] such that SM →k S ′

M , and

• if SM →k S ′
M then there exists S ′

I of P [I] such that SI →k S ′
I and S ′

M ∈ ReifyM (S ′
I).

Proof. By the definition of reification for data-parallel program states, let Qt be the generic
program such that Qt[I] and Qt[M] are the program components of K(t) and K ′(t),
respectively, for each t ∈ D.

If K-Barrier holds then every Qt for t ∈ D either (i) begins with a barrier statement
or (ii) is empty. By the definition of monoid substitution, which does not change barrier
statements, this ensures that K-Barrier applies to both SI or SM . Furthermore, the
condition on the stores of the successor states S ′

I and S ′
M are immediately satisfied since

K-Barrier preserves stores.
Otherwise, the rule applied must be K-Step for some thread t in which the first state-

ment of Qt is not a barrier statement. Using Lemma 5.3 (seq), we know that the same
rule from the sequential operational semantics applies and that the successor array store
and variable store of t satisfy the sequential reification condition. Hence, the data-parallel
reification condition on stores is also satisfied since all variable stores not belonging to t
are preserved by K-Step.

Lemma 5.4 (par) (multiple-step simulation). Let P be a generic data-parallel program,
M a monoid, and n a natural number. If SM is a program state of P [M] then

• there exists an initial state SI of P [I] satisfying the data-parallel singleton condition
for n such that SM ∈ ReifyM (SI), and

• if SI →+
k S ′

I then there exists S ′
M ∈ ReifyM (S ′

I) of P [M] such that SM →+
k S ′

M , and

• if SM →+
k S ′

M then there exists S ′
I of P [I] such that SI →+

k S ′
I and S ′

M ∈ ReifyM (S ′
I).

Proof. Let SM = (σ′A,K
′) be an initial state of P [M]. Similar to the sequential version of

this lemma, the proof is by induction on the number of steps where we apply Lemma 5.3
(par) after first establishing that an initial state SI of P [I] exists that satisfies the data-
parallel singleton condition for n such that SM ∈ ReifyM (SI). The definition given in
Lemma 5.3 (seq) is easily adapted for this purpose. Let SI = (σA,K) with

• for all t ∈ D and v of type T in P , where σv and σ′v are the variable stores of K(t)

and K ′(t), respectively:

σv(v) =

σ′v(v) if T ̸= SX
⊤ if T = SX

154

• for all A of type Array(T) in P and k ∈ Int,

σA(A)(k) =

(k, k) if A = in and k ∈ {0, . . . , n− 1}

⊤ if A = in and k ̸∈ {0, . . . , n− 1}

⊤ if A ̸= in and T = SX
σ′A(A)(k) otherwise

That SI satisfies the data-parallel singleton condition for n and that we have SM ∈
ReifyM (SI) is now immediate.

5.3.3. Data Race-Freedom

The semantics of Figure 5.7 assume that statements are executed atomically by threads.
In particular, a thread may execute a statement involving multiple shared state references
in a single step, e.g., A[i] := A[j]. This is not valid in practice since such a statement
would involve separate, possibly multiple, load and store instructions (and hence memory
accesses) between which other threads could interleave. Moreover, even if we refined our
semantics to reflect this, we would still need to account for weak memory semantics [HP11,
sec. 5.6]. Under weak memory semantics, there is no global consistent ordering of memory
accesses and each thread may observe writes to shared memory in different orders. Both
the CUDA and OpenCL programming models specify weak memory models [NVI12a,
Khr13b].

Fortunately, we can avoid reasoning at this level of detail by relying on the data race-
free (DRF) guarantee [AH90] provided by “all sane memory models” [Vaf14]. The DRF
guarantee states that if a program is free of data races then the program can only exhibit
sequentially consistent behaviours. Under sequential consistency, there is a global consis-
tent ordering of memory accesses and all threads observe the same ordering of memory
accesses [Lam79]; that is, an interleaved semantics, as we have given above. In other
words, assuming an interleaving semantics is valid if we use it to reason about data race-
free programs. The CUDA memory model is not well-specified, but our understanding
(from personal communication) is that the intention is for it to provide the DRF guaran-
tee. The OpenCL memory model specifies the DRF guarantee [Khr13b, sec. 3.3.4].

We now formalise what it means for a data-parallel program to exhibit a data race.
Furthermore, we show that if a data-parallel program is data race-free then, due to the
properties of barrier synchronisation, the result is deterministic. Sequential consistency,
by itself, does not guarantee determinism.

155

Say that we read from an array element A[i] in an execution step if σA(A)(i) is referenced
during the evaluation of any expression occurring in the step. Likewise, say that we write
to an array element A[i] in an execution step if σA(A)(i) is updated in the step. An array
element A[i] is accessed if it is either read from or written to in the execution step.

Definition 10. Let S0 →+
k Sn be an execution of a data-parallel program P . The execution

has a data race if there are steps Si →k Si+1 and Sj →k Sj+1 such that

• distinct threads are responsible for these steps,

• a common array element is accessed in both execution steps,

• at least one of the accesses writes to the array element, and

• no application of K-Barrier occurs in between the steps.

A data-parallel program P is data race-free if for every initial state S0 of P and execution
starting from S0 it holds that the execution does not have a data race.

Theorem 5.5. Let P be a generic data-parallel program and let M be a monoid. Then,
P [M] is data race-free ⇐⇒ P [M ′] is data race-free for all monoids M ′.

Proof. The ⇐-direction is trivial because M is a monoid.
For the ⇒-direction, observe that neither the control-flow nor the array accesses can be

influenced by the choice of M ′ by the typing rules and genericity of P .

We now prove our determinism result which informally says that if a data-parallel pro-
gram is data race-free and terminating then the program is deterministic and all executions
will result in the same final program state. This result has a similar flavour to the PUG
canonical schedule result [LG10] which proves that if a GPU kernel is racy then all sched-
ules are capable of uncovering a race (although, not necessarily exactly the same race).
Similar results also appear in the Test Amplification work of Leung et al. [LGA+12] and
the non-interference work of Tripakis et al. [TSL10].

Theorem 5.6. Let P be a data-parallel program that is data race-free and S be an initial
program state of P . If there exists a finite, maximal execution starting from S with final
array store σA then all executions starting from S are finite and for all maximal executions
the final array store is σA.

Proof. Let ρ = S →k S2 →k · · · →k Sn be a finite, maximal execution of P . By the
operational semantics, every step of the execution is an application of K-Step for some

156

thread t or K-Barrier. We will say that a barrier synchronisation occurs whenever
K-Barrier is applied.

Consider the sequence of program states of ρ from the initial program state S until the
first barrier synchronisation occurs; call this subsequence a barrier interval (this terminol-
ogy was introduced by Li and Gopalakrishnan [LG10]). By definition, every step of the
barrier interval is an application of K-Step and chooses some interleaving of threads. Be-
cause P is data race-free, the execution of a single thread cannot depend on the actions of
another until after the barrier synchronisation. In particular, within this barrier interval,

• if a thread t reads from an array element A[i] then no other thread can write to the
same array element; and

• if a thread t writes to an array element A[i] then no other thread can access the
same array element.

Hence, the values that are read or written to the shared array store σA are deterministic
for every thread. That is, although threads may interleave non-deterministically their
individual execution within a barrier interval is deterministic. Therefore the state of the
array store is deterministic at the first barrier synchronisation for all executions of P . We
further note that since the barrier interval is finite all other interleavings considered by
other executions must also be finite.

The proof now follows by applying this argument inductively on the barrier intervals of
the execution ρ.

5.4. Verification Method

We now outline a verification method based on the theoretical results of the previous
section. Our results show that the functional correctness of a generic data-parallel pre-
fix sum of length n, implemented as a barrier-synchronising program, can be estab-
lished by (i) proving that the program is data race-free and (ii) testing that the pro-
gram behaves correctly with respect to the interval monoid for every initial state with
in = [(0, 0), (1, 1), . . . , (n − 1, n − 1)].4 In practice, because prefix sum implementations
take no inputs except for in, this means there is just a single input to test. Another ad-
vantage of this hybrid verification method, is that if this test fails then we have a concrete
counterexample to the implementation being a correct prefix sum. This is because the
interval of summations is itself a monoid.

4 That is, the result is [(0, 0), (0, 1), . . . , (0, i), . . . (0, n− 1)] for an inclusive prefix sum.

157

Since GPU kernels are barrier-synchronising programs that are required to be data race-
free — the semantics of an OpenCL or CUDA kernels is undefined if the kernel has a
data race [Khr13b, NVI12a] — we can use this observation to establish the functional
correctness of a GPU kernel that claims to implement a generic prefix sum for a single
input array:

1. Prove that the GPU kernel is data race-free; and

2. Run a single test case using the interval monoid to check functional correctness.

Each step can be established individually but the functional correctness guarantee provided
by step 2 is conditional on the result of step 1 (due to Theorem 5.6). We now discuss the
main issues in using this verification method in practice.

Generic Prefix Sums The CUDA programming language supports generic functions
using function templates. The OpenCL programming language does not support generic
functions directly. However, we can still describe a generic prefix sum in OpenCL using
the preprocessor. Each prefix sum implementation is equipped with a symbol TYPE and
macro OPERATOR as placeholders for the concrete type and operator. To execute the prefix
sum we include an appropriate header with definitions for TYPE and OPERATOR.

Verification of Data Race-Freedom Step 1 can be discharged to any sound verifier
for GPU kernels capable of proving race-freedom (Chapter 2). By Theorem 5.5, we are
free to prove race-freedom of an implementation for any choice of binary operator. This
step establishes the race-freedom of the kernel for all input lengths n. In our experimental
evaluation in Section 5.5 we will use GPUVerify for this purpose.

Encoding the Interval of Summations The dynamic analysis of step 2 requires an
encoding of the interval monoid. To check a prefix sum of length n we must encode
elements (i, j) for 0 ≤ i ≤ j < n as well as the identity 1I and unknown ⊤ elements.
An element can therefore be encoded using O(lgn) bits meaning that O(n lgn) bits are
required for the test input and output. In practice, for OpenCL, we can use the uint2
vector data type.

Soundness, Completeness and Automation Our verification method is sound due
to the guarantees given by Theorem 5.1 (par) (soundness and completeness), together with
Theorem 5.5 (race-freedom) and Theorem 5.6 (determinism). Additionally, step 1 is sound
due to the requirement that a sound technique for verifying race-freedom is used. However,

158

the soundness of step 2 depends on the integrity of the compiler, driver and hardware
implementation on which the test is executed. We can guard against this potential source
of unsoundness by testing with respect to multiple platforms using different compilers,
drivers and hardware.

Our verification method is only complete if the technique used to verify race-freedom
is complete. As discussed in Chapter 2, GPUVerify is incomplete and may report false
positives.

Our verification method requires some manual effort to provide loop invariants for GPU-
Verify during step 1. Although, GPUVerify has automatic inference of loop invariants
(which we studied in Chapter 3), we disabled this feature when performing our experi-
mental evaluation and provided invariants manually. The dynamic analysis for step 2 is
fully automatic.

Handling Extended Programming Language Features Our results are based on
simple imperative and data-parallel languages that omit real-world language features such
as procedures, unstructured control flow and pointers. We believe our results extend
to real GPU programming languages under the condition that data of generic type SX
is never accessed via pointers with different element types. Without this condition, a
program could cast the out array into a char pointer and write the expected output (for
the interval monoid) byte-by-byte; allowing a false negative result for the dynamic analysis
(step 2). Figure 5.9 gives an OpenCL kernel that can pass the interval of summations test
case, but is not a correct prefix sum. In practice, we do not see prefix sum implementations
using these features.

5.5. Experimental Evaluation

We now evaluate the effectiveness of the interval of summations for functional correctness
testing for four distinct prefix sum implementations. The main findings of our experiments
are:

• GPUVerify was able to verify all prefix sum implementations for all power-of-two
problem sizes up to 231 threads.

• The interval of summations allowed dynamic checking of all prefix sum implemen-
tations for all power-of-two problem sizes up to 220 threads. This result is beyond
the range of an existing method by Voigtländer.

159

__kernel void badprefixsum(
__local TYPE *out, __local TYPE *in, unsigned n) {
unsigned tid = get_local_id(0);

// Set out[tid] = (0,tid) byte-by-byte
// assuming TYPE is uint2
// and a little-endian machine
char *A = (char *)out;
A[(2*tid) *4+0] = (char) 0;
A[(2*tid) *4+1] = (char) 0;
A[(2*tid) *4+2] = (char) 0;
A[(2*tid) *4+3] = (char) 0;
A[(2*tid+1)*4+0] = (char) ((tid >> 0) & 0xff);
A[(2*tid+1)*4+1] = (char) ((tid >> 8) & 0xff);
A[(2*tid+1)*4+2] = (char) ((tid >> 16) & 0xff);
A[(2*tid+1)*4+3] = (char) ((tid >> 24) & 0xff);

}

Figure 5.9.: An OpenCL kernel that can pass the interval of summations test case using
casting but is not a correct prefix sum

We compare the interval of summations against an existing result, discussed further in
Section 5.6, due to Voigtländer [Voi08]. This shows that a generic prefix sum is functionally
correct for all input lengths if the correct result is computed for all inputs over a set of
three elements with respect to two binary operators. Voigtländer further shows that it
is sufficient to consider O(n) test cases: n(n + 1)/2 tests using the first operator and
n − 1 tests using the second operator. We can use this to result to yield a verification
method by noting that (i) although Voigtländer’s result considers all input lengths n
it also restricts to the case of consider a particular n; and (ii) Theorem 5.6 allows us
to lift this method to race-free barrier-synchronising programs. Similar to the interval
of summations dynamic analysis, we can run Voigtländer’s test cases dynamically. The
functional guarantee provided by Voigtländer’s method is conditional on proving race-
freedom so the overhead of race checking applies to both methods.

Choice of Prefix Sums Our evaluation considers four distinct prefix sum algorithms,
implemented in OpenCL: Kogge-Stone [KS73], Sklansky [Skl60], Brent-Kung [BK82] and
Blelloch [Ble93]. The Blelloch algorithm is an exclusive prefix sum; all others are in-
clusive prefix sums. We surveyed several GPU code repositories — the AMD APP
SDK5, the NVIDIA CUDA SDK6, and the SHOC [DMM+10], Rodinia [CSLS09] and
Parboil [SRS+12] benchmark suites — and found that Kogge-Stone is the most widely-
used GPU implementation in practice, Blelloch is used when an exclusive prefix sum is

5http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-
processing-app-sdk/

6https://developer.nvidia.com/gpu-computing-sdk

160

http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/
https://developer.nvidia.com/gpu-computing-sdk

(a) Kogge-Stone (b) Sklansky

(c) Brent-Kung

1

(d) Blelloch

Figure 5.10.: Circuit representations of the prefix sum algorithms for n = 8 elements

required, and Brent-Kung is used several times in one large CUDA kernel that computes
eigenvalues.

Figure 5.10 gives a circuit diagram for each algorithm for a fixed n = 8 input. There is
a wire for each input and data flows top-down through the circuit. Each node • performs
the binary associative operator on its two inputs and produces an output that passes
downwards and also optionally across the circuit (through a diagonal wire).

Experimental Setup As discussed in Section 5.4, we use GPUVerify to prove that each
kernel is free for data races. These experiments were performed on a Linux machine with a
1.15 GHz AMD Phenom 9600B 4-core processor using a version of GPUVerify downloaded
from the tool web page on 26 June 2013.7

We ran our dynamic analysis on five different platforms: two NVIDIA GPUs – a 1.16
GHz GeForce GTX 570 and a 1.15 GHz Tesla M2050; two Intel CPUs – a 2.13 GHz 4 core
Xeon E5606 and a 2.67 GHz 6 core Xeon X5650; and one ARM GPU – a 533 MHz 4 core
Mali T604. These devices exhibit a range of power and performance characteristics. The
NVIDIA GPUs offer a large number of parallel processing elements running at a relatively

7http://multicore.doc.ic.ac.uk/tools/GPUVerify/

161

http://multicore.doc.ic.ac.uk/tools/GPUVerify/

Table 5.2.: Time taken to check data race-freedom using GPUVerify. Times shown are in
seconds with 95% confidence intervals.

Length of Input
21 22 … 29 210 211 212 213 214 … 229 230 231

Kogge-Stone 5.68 5.81 5.81 5.97 5.59 5.77 5.74 5.62 6.40 6.42 6.60
±0.05 ±0.03 ±0.03 ±0.03 ±0.04 ±0.03 ±0.20 ±0.07 ±0.06 ±0.13 ±0.10

Sklansky 5.62 6.11 6.58 6.69 6.77 6.67 6.55 6.44 7.35 8.06 7.94
±0.03 ±0.19 ±0.17 ±0.22 ±0.21 ±0.11 ±0.15 ±0.19 ±0.14 ±0.03 ±0.01

Brent-Kung 5.90 6.65 11.39 12.85 10.22 10.30 10.70 12.58 14.87 11.11 16.42
±0.20 ±0.12 ±0.22 ±0.17 ±0.11 ±0.06 ±0.05 ±0.14 ±0.29 ±0.15 ±0.12

Blelloch 5.99 7.39 12.56 13.77 11.97 14.10 11.56 12.25 15.51 12.97 14.84
±0.08 ±0.02 ±0.12 ±0.07 ±0.11 ±0.05 ±0.37 ±0.15 ±0.77 ±0.35 ±0.25

low clock-rate; the Intel CPUs run at a higher clock-rate but exhibit less parallelism;
and the ARM GPU is designed for high power-efficiency. We chose to run on multiple
platforms to guard against possible unsound results as a result of a particular compiler,
driver or hardware configuration.

Each experiment was run with a timeout of 1 hour. All the timing results we present
are averages over three runs.

5.5.1. Verification of Data Race-Freedom

Table 5.2 shows the time taken in seconds (with 95% confidence intervals using a two-
tailed t-distribution) for GPUVerify to prove race-freedom for each of our prefix sum
implementations. By Theorem 5.5, we are free to prove race-freedom of an implementation
for any choice of binary operator. In this experiment we use the interval monoid. We varied
the problem size for all power-of-two input sizes up to 232. For brevity, we omit some
intermediate results which are in the same order of magnitude for each implementation.
In all cases, the analysis with GPUVerify succeeds in less than twenty seconds.

5.5.2. Dynamic Analysis

Table 5.4 shows the time taken in seconds for the dynamic analysis using the Interval of
Summations (rows labelled I) and Voigtländer’s method (rows labelled V). Timeouts are
indicated by ‘TO’. We varied the problem size for all power-of-two input sizes up to 220.
Each time is the end-to-end time to run the test case(s) required for each method: i.e.,
device initialisation, memory allocation of buffers, kernel compilation, copy input data to
the device, running the test, copying result data to the host and validating the result. For
the Voigtländer method, which requires a quadratic number of test cases to be checked for
each problem size, we designed the test program to perform device initialisation, memory

162

Table 5.3.: Number of test cases required for Voigtländer method
n Number of Test Cases

n(n+ 1)/2 + (n− 1)

29 131839
210 525823
211 2100223
212 8394751
213 33566719
214 134242303
215 536920063
216 2147581951
217 8590131199
218 34360131583
219 137439739903
220 549757386751

allocation and kernel compilation once and amortised this cost across all test cases.
Our results show that the interval of summations method significantly outperforms the

Voigtländer method, across all platforms. This is due to the quadratic growth in the
number of test cases for the Voigtländer method; whereas, the interval of summations
always requires a single test case. Table 5.3 shows the number of test cases required for
increasingly large problem sizes. On all platforms, we found that problem sizes of n ≥ 214

exhausted our time limit of 1 hour when using Voigtländer’s method.
Our results indicate that we could tackle even larger problem sizes using the interval

of summations. In this experiment we limited our problem sizes because we found that
problem sizes greater than 220 exceeded resource limits for the ARM platform.

5.6. Related Work

Sheeran and Voigtländer The closest work to the results in this chapter is a paper
by Voigtländer [Voi08], which gives two results for sequential generic prefix sums. The
first result shows, using relational parametricity [Wad89], that a generic prefix sum is
correct if and only if, for all input lengths n, it computes the correct result for the list
[[0], [1], . . . , [n − 1]] using list concatenation as the binary operator; that is, it yields the
output [[0], [0, 1], . . . , [0, . . . , n − 1]]. Voigtländer states that this result is due to earlier
unpublished work by Sheeran. This is confirmed in a later paper by Sheeran [She11],
which explores the design space of prefix sums. We refer to this result as the Sheeran
result. Because the Sheeran result also holds for fixed lengths n it is similar to Theorem 5.1
(seq) for sequential generic prefix sums. However, we cannot use the Sheeran result as
the basis for a verification method because O(n2 lgn) space is required to represent the

163

Table 5.4.: Time (in seconds) taken to establish correctness of prefix sum implementations
using the interval of summations (I) and Voigtländer (V) method

Length of Input
29 210 211 212 213 214 … 218 219 220

NVIDIA GeForce GTX 570
Kogge-Stone V 19.2 76.2 337.6 1463.9 TO TO TO TO TO

I 0.4 0.5 0.3 0.4 0.3 0.4 0.4 0.4 0.4
Sklansky V 18.5 71.8 320.2 1438.3 TO TO TO TO TO

I 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Brent-Kung V 19.0 69.3 317.3 1454.3 TO TO TO TO TO

I 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Blelloch V 19.2 75.4 324.2 1595.3 TO TO TO TO TO

I 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

NVIDIA Tesla M2050
Kogge-Stone V 14.6 36.1 160.9 653.0 2796.8 TO TO TO TO

I 0.3 0.3 0.6 0.5 0.5 0.5 0.6 0.5 0.6
Sklansky V 12.2 32.5 149.6 609.3 2601.5 TO TO TO TO

I 0.3 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.6
Brent-Kung V 10.9 35.9 165.7 678.1 2889.2 TO TO TO TO

I 0.3 0.3 0.6 0.5 0.6 0.5 0.6 0.6 0.6
Blelloch V 10.9 36.7 166.0 679.9 2931.8 TO TO TO TO

I 0.3 0.3 0.5 0.6 0.6 0.6 0.6 0.6 0.6

Intel Xeon X5650
Kogge-Stone V 21.1 109.8 660.8 3467.1 TO TO TO TO TO

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Sklansky V 12.2 78.4 404.8 2003.9 TO TO TO TO TO

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Brent-Kung V 12.6 80.4 469.9 2272.5 TO TO TO TO TO

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Blelloch V 12.9 80.7 472.1 2332.5 TO TO TO TO TO

I 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3

Intel Xeon E5606
Kogge-Stone V 107.0 909.2 TO TO TO TO TO TO TO

I 1.9 1.9 2.1 2.1 2.0 2.1 2.4 2.7 3.2
Sklansky V 38.7 266.0 1221.5 TO TO TO TO TO TO

I 1.9 1.9 2.0 2.1 2.0 2.0 2.2 2.3 2.4
Brent-Kung V 51.5 409.1 1793.8 TO TO TO TO TO TO

I 2.0 2.0 2.1 2.1 2.1 2.1 2.3 2.3 2.5
Blelloch V 54.3 429.9 1900.3 TO TO TO TO TO TO

I 1.9 2.0 2.1 2.1 2.1 2.1 2.4 2.4 2.6

ARM Mali T604
Kogge-Stone V 287.0 1166.1 TO TO TO TO TO TO TO

I 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5
Sklansky V 287.2 1147.6 TO TO TO TO TO TO TO

I 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5
Brent-Kung V 287.4 1108.1 TO TO TO TO TO TO TO

I 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6
Blelloch V 277.0 1105.3 TO TO TO TO TO TO TO

I 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6

164

list-of-lists output. In fact, this space complexity only applies to correct algorithms since
an incorrect algorithm could apply the concatenation operator arbitrarily many times and
require unbounded space. The interval of summations monoid avoids this space complexity
by using a compact representation for intervals that exploits our key observation that
a correct generic prefix sum should never compute a non-contiguous summation. Let
L denote the monoid of integer lists under list-concatenation. Then a straightforward
homomorphism θ : L→ I is defined as:

θ([x1, . . . , xm]) =

1I if m = 0

(x1, xm) if m > 0 and xi+1 = xi + 1 (1 ≤ i < m)

⊤ otherwise

The second result, also using relational parametricity, is an elegant proof of the ‘0-1-
2 principle’ for prefix sums. In the same spirit as the Knuth 0-1 principle for sorting
networks [Knu98, sec. 5.3.4]8, Voigtländer’s 0-1-2 principle states that if a generic prefix
sum computes the correct result for all ternary sequences (each element of the input
is 0, 1, or 2) with every associative operator (defined over the ternary set) then it is
correct for all input sequences with all associative operators. In fact, after some reflection,
Voigtländer improves this result and shows that it suffices to consider just two operators
and a quadratic number of ternary sequences: O(n) sequences with the first operator and
n−1 sequences with the second operator. We refer to this result as the Voigtländer result
and we evaluate a method derived from this result in Section 5.5. Table 5.5 compares the
Sheeran and Voigtländer with the interval of summations.

Table 5.5.: Asymptotic behaviour of the interval of summations against existing results
Number of Tests Input Space Output Space

Interval of Summations O(1) O(n lgn) O(n lgn)
Sheeran O(1) O(n lgn) O(n2 lgn)
Voigtländer O(n2) O(n lgn) O(n lgn)

Both Sheeran and Voigtländer focus on sequential Haskell implementations of prefix
sums; in particular, Sheeran uses Haskell to describe circuit representations of prefix
sums. In contrast, our results extend smoothly to handling parallel barrier-synchronising

8 A sorting network is a circuit representation of an oblivious sorting algorithm. A sorting algorithm
is oblivious if it performs the same sequence of comparisons independent of the values of the input,
hence a circuit or network of comparators is an ideal representation. The 0-1 principle states that if a
sorting network for n inputs sorts all 2n Boolean sequences (each element of the input is 0 or 1) into
non-decreasing order then it is correct for any sequence over any total ordered value set.

165

programs, leading to a practical verification method for verifying GPU prefix sum im-
plementations. Due to our imperative, data-parallel setting, we present our theoretical
results using a direct simulation argument; we are not aware of any work using relational
parametricity to reason about shared-memory data-parallel programs.

Correct-by-Derivation Prefix Sums An alternative approach by Hinze [Hin04] is
to construct prefix sums that are correct by derivation. In Hinze’s work, rather than
verifying candidate implementations for functional correctness, new prefix sum circuits
are built from a set of basic primitives and combinators. The correctness of these circuits
is ensured by a set of algebraic laws derived for these combinators. Similar to the work of
Sheeran, prefix sums are given as Haskell programs describing circuit layouts. We are
not aware of any work that translates this approach to a data-parallel setting.

Barrier Invariants In Chapter 4, we introduced barrier invariants as a method for
reasoning about data-dependent GPU kernels [CDK+13]. We used barrier invariants to
statically prove functional correctness for three distinct prefix sums: Blelloch, Brent-
Kung and Kogge-Stone. Each distinct prefix sum implementation required a different and
complicated set of barrier invariants. The interval of summations method is automatic
and significantly outperforms the results using barrier invariants. However, the concept
of barrier invariants has wider applicability beyond prefix sums.

5.7. Summary

The interval of summations is a new abstraction for reasoning about prefix sums. The key
insight of our abstraction is that it precisely captures the behaviour of prefix sums due to
the restriction that prefix sums are only defined with respect to monoids. In particular,
the interval of summations is a ‘tailored abstraction’: it is only precise for prefix sums
and would not yield interesting results for other programs. We have given theoretical
guarantees provided by this abstraction and shown that it can be used as the basis for an
automatic and highly-scalable verification method.

166

6. Conclusions and Open Problems

This thesis set out to build scalable verification techniques for data-parallel programs. To
conclude, we examine our contributions against this aim, discuss the limitations of our
work and point to future work.

6.1. Contributions

This thesis has made the following original contributions to the field of program verifica-
tion:

• Chapter 3 gave an empirical study of candidate-based invariant generation in the
domain of GPU kernels. We developed new candidate-generation rules that enable
automatic and precise reasoning for 256 (72%) GPU kernels from a set of 356 bench-
marks. To our knowledge this is the largest invariant generation study of its kind
(in terms of number of benchmarks). We introduced refutation engines, based on
the idea of under-approximating analyses, as a mechanism for accelerating the Hou-
dini [FL01] computation of invariants. This yielded a speedup of 1.25× across all
benchmarks.

• Chapter 4 addressed the problem of data-dependent GPU kernels. We developed
barrier invariants as a new abstraction and verification technique for catering for
this small, but important, class of kernel. Barrier invariants allowed us to cap-
ture a functional specification for three distinct prefix sum implementations and
race-freedom for a real-world stream compaction example. These examples were
previously beyond the scope of existing techniques.

• Chapter 5 developed the interval of summations: a novel and bespoke abstraction
for reasoning about prefix sums, a key data-parallel primitive. We proved strong
properties about the interval of summations showing that the abstraction is both
sound and complete (when analysing prefix sum implementations). The power of
this result is that it enables a hybrid verification method that allows us to verify the
full functional correctness of a given prefix sum implementation using a single test

167

case. We demonstrated the applicability of this technique by tackling four real-world
parallel prefix sum implementations.

Let us evaluate these contributions against the criteria of precision, performance and
automation, which we regard as important characteristics of scalability.

Candidate-Based Invariant Generation Study Invariant generation is critical for
precision (avoiding false positives) since we cannot in general reason precisely about loops
without invariants. However, with a candidate-based invariant generation approach, pre-
cision and performance are at odds since generating more candidates is potentially detri-
mental to performance. We introduced refutation engines as a method for mitigating this
problem. Invariant generation is also essential for automation and avoiding the need for
programmer annotations.

Barrier Invariants Barrier invariants enable precise reasoning for data-dependent GPU
kernels, which cannot be reasoned about using coarser abstractions. Our experimental
evaluation shows that the verification method using this abstraction can handle hundreds
of threads when using a timeout of 3 hours; this is heavyweight compared to the perfor-
mance experiments we ran in our candidate-based invariant generation study where we
used a timeout of 10 minutes. We did not automate the generation of barrier invariants
since the invariants we required were complex and problem-specific. However, we em-
phasise that the verification technique that we developed does not assume the truth of
user-supplied barrier invariants, but checks that they do indeed hold. Therefore, compared
to the techniques made by our first contribution, barrier invariants enable (i) precise rea-
soning for more challenging kernels and (ii) richer properties to be proven, but at a cost
of automation. Barrier invariants require expert users to guide their application.

Interval of Summations The interval of summations is a sound and complete abstrac-
tion for prefix sums. The abstraction is a precise fit for prefix sums (but, of course, is
not a precise abstraction for other kinds of GPU kernel). Our experimental evaluation
shows that the hybrid verification method using this abstraction can handle all feasible
sizes of four distinct prefix sum implementations (for all power-of-two problem sizes up
to 220) in seconds and with minimal programmer assistance. The interval of summation
yields a highly-scalable, precise and automatic verification technique, but is restricted in
its application to one class of kernel.

168

6.2. Limitations

We now discuss limitations of our work including underlying assumptions that may limit
the applicability of our contributions.

Unrealistic Benchmarks In this thesis we have been careful to distinguish between real
and synthetic programs (Section 1.2). A real program is found ‘in the wild’ and therefore
reflects the idioms and language features employed by real programmers. A key assumption
of our work is that the programs we have studied are real and not synthetic. If the programs
that we have studied are not a true reflection of the state of GPU programming then we
cannot say whether the techniques developed in this thesis have been truly scalable.

To guard against this problem, the benchmarks used in our invariant generation study
were gathered from different sources. We collected a large number of kernels from nine
distinct sources including software developer kits [AMD, NVI], hand-translated exam-
ples [Mic], performance benchmarks [BYF+09, SRS+12, CSLS09, DMM+10, Rig], and
compiler-generated benchmarks [GGXS+12]. We noted in Section 3.2, that a minority
of these kernels are somewhat synthetic but we believe the majority are a true reflection
of GPU programs. The utility of the prefix sum in data-parallel programming is well-
established [Ble93] and prefix sums appear in all GPU data-parallel primitive libraries
that we have examined so this increases our confidence in the applicability of barrier
invariants and the interval of summations.

Other than the kernels in the Rightware benchmarks [Rig], we have not applied our tech-
niques to programs written in industry. We are now pursuing this through collaboration
with ARM and Imagination Technologies, where we hope to integrate GPUVerify with
their toolchains. As a data point, the GPUVerify development team recently received
a bug report (personal communication in March 2014) from a programmer in industry
that has attempted to verify a kernel consisting of ten thousand lines of OpenCL code.
GPUVerify was unable to reason about the kernel, although, the bug report additionally
noted that the kernel had proved problematic even for the AMD and NVIDIA industry
compilers.

GPU Kernels Are Tractable Targets GPU kernels exhibit a number of character-
istics that enable scalable verification techniques. More specifically, because all threads
execute the same templated program (parameterised by thread and group id variables)
the two-thread reduction used in the kernel transformation can be employed. Also, GPU
kernels do not typically exhibit complex pointer manipulation, dynamic memory allocation

169

or recursion, which are known difficulties for verification. Hence our results are limited
to reasoning about data-parallel GPU kernels and it is not obvious how to extend them
beyond this domain.

We respond to this limitation by noting that these restrictions are part of the reason
why GPGPU programming has been successful (since they enable a simple mapping to
hardware for performance). Therefore, it is unsurprising that we have been able to exploit
these characteristics for more general verification purposes. Two of the contributions of
this thesis are applicable beyond the domain of GPU kernels. Firstly, the idea of refutation
engines is generally applicable to invariant generation techniques based on Houdini. Sec-
ondly, the interval of summation results are generally applicable to barrier synchronising
programs (such as MPI). More generally, we are not against domain-specific verification.
Work in domain-specific languages shows that there is much to be gained by incorporating
domain knowledge for optimisation and performance portability. We believe the same is
true for verification and point to the interval of summations as a good example.

Verified Programs Are Not Perfect This limitation is an argument against verifica-
tion, of which there have been many [DLP79, Fet88, Mac01]. The argument boils down to
saying that it is meaningless to say that a program is verified. Firstly, there will always
be further bugs. Saying that a program is verified is simply a paucity of imagination.
Secondly, verifying a program only shows adherence to some specification. Importantly,
it does not say whether the specification itself is valid or not. In other words, we can never
establish the absolute correctness of a program.

Precisely. It is a mistake to assume that verified programs cannot go wrong. As Fetzer
pointed out, verification cannot account for the physical world in which programs operate,
for example, a random soft error [Fet88]. We agree with Nelson, who wrote “the message
at the successful exit of program verifiers should be changed from Verified to Sorry, can’t
find any more errors” [Nel81, p. 4]. We take a pragmatic view: a program verifier is worth
using if the benefits outweight the costs. We believe scalable verification techniques are
vital for tipping the scale and for making verification a practical reality.

6.3. Future Work

We now discuss possible future directions of research based on the work in this thesis.
Some of our suggestions are concerned with making verification more practical for everyday
programmers, which we view as a central challenge. We believe programmers are pragmatic
and will take up verification tools when there is a tangible benefit, over and beyond the

170

cost, to using them.

Correct Data-Parallel Primitive Libraries An area where the cost-benefit for ver-
ification is favourable is extensively-used library code since the effort of verifying a fre-
quently used library function can be amortised over many possible users. In data-parallel
programming, we find that certain primitives are used frequently and many data-parallel
primitive libraries exist for GPU programming.1 Both barrier invariants and the interval
of summations can be used to functionally verify parallel prefix sums. Other important
primitives include split, compact and sorting operations (discussed briefly in Figure 4.2 of
Chapter 4). Barrier invariants should be capable of capturing the functional specification
of these primitives. More speculatively, it may be possible to find new abstractions, similar
to the interval of summations, that completely capture a class of data-parallel primitive.

Better User-Interfaces for Program Verifiers A critical factor for pragmatic pro-
gram verification that we have not examined is usability. In prior work, we addressed the
problem of reporting meaningful error messages when using GPUVerify [BBC+14]. We
believe this could be enhanced by automatically generating concrete test cases that cause
failures in a similar fashion to dynamic symbolic execution tools such as GKLEE [LLS+12].
An advantage of this approach is that programmers are well versed in understanding test
cases and naturally understand their utility.

Related to the problem of usability, there is a need for rigorous user studies to quan-
tify the effectiveness of verification. The work on the PUG tool by Li and Gopalakr-
ishnan [LG10] reports an interesting case study where PUG was applied to 57 kernels
written by a graduate class on GPU programming. This found that PUG was able to
find some “serious (but non-obvious) bugs in beginner examples.” However, the study did
not follow this up by returning the error messages to the students as feedback. A study
comparing the effectiveness of dynamic, hybrid and static race analysis techniques would
be interesting and informative to conduct.

Verification of Kernels Using Atomics and Fences Kernels using atomics and
fences are beyond the scope of the verification techniques in this thesis. The principal
problem of atomics is that they relax the definition of data races. Using atomics it is
possible for multiple threads to concurrently update a memory location without racing.

1Data-parallel primitive libraries for GPU programming include the Thrust Parallel Algorithms Library
(http://thrust.github.io), the CUDA Data-Parallel Primitives Library (http://cudpp.github.io)
and the OpenCL Data-Parallel Primitives Library (https://code.google.com/p/clpp/).

171

http://thrust.github.io
http://cudpp.github.io
https://code.google.com/p/clpp/

Hence, atomics are a valid source of non-determinism and so violate the assumption that
race-free GPU kernels are deterministic. This means that the canonical schedule result
of PUG [LG10] (also used by GKLEE and GPUVerify) does not hold. Existing work
for analysing atomics in GPU kernels is given by Chiang et al. [CGLR13] and Bardsley
and Donaldson [BD14], which extend GKLEE and GPUVerify, respectively. The work of
Chiang et al. uses conflict detection to note when alternate schedules must be explored.
As with other techniques based on dynamic symbolic execution, this work is better suited
to bug-finding than verification. For verification, the work of Bardsley and Donaldson
extends the kernel transformation and shared state abstraction to cater for simple uses of
atomics. Interestingly, the paper notes two kernels (the Mandelbrot kernels in the CUDA
SDK) that break the two-thread reduction and so cannot be reasoned about precisely.

Related to the use of atomics are fences, which affect the ordering of memory opera-
tions, and can be combined with atomics to form lightweight locks for mutual exclusion.
Although these idioms are not yet common2 we expect that kernels using these features
to become more prevalent as more complicated applications are accelerated on GPUs. No
work to our knowledge has addressed the problem of verifying kernels with these features.

Functional Verification of Kernels Using Floating-Point Our results from Chap-
ter 3 show that race-freedom does not generally require precise reasoning about floating-
point computation; in both GPUVerify and GKLEE, floating-point operations are ab-
stracted. This does not hold when we consider wanting to prove functional specifications
of kernels. For example, a kernel that computes an image filter may have a specifica-
tion that each pixel of the output is some floating-point function of its neighbours. The
work of KLEE-FP [CCK11a] presents a technique for crosschecking an OpenCL kernel
against a SIMD implementation. The SIMD implementation can be seen as the specifica-
tion against which the OpenCL kernel is checked for equivalence. Because KLEE-FP is
based on dynamic symbolic execution the tool is limited to bounded equivalence check-
ing (i.e., equivalence up to a certain size of input). An ideal verifier would allow precise
reasoning for floating-point operations and enable verification to scale up to large or even
unconstrained problem sizes.

Verification for Performance Tuning Verification can be used to inform the pro-
grammer about potential bottlenecks or performance problems. For example, both the
PUG [LG10] and GKLEE [LLS+12] tools report possible performance problems: non-

2In the benchmarks discussed in Section 3.2 only two kernels were eliminated from the study due to
atomics or fences.

172

coalesced memory accesses, bank conflicts and divergent warp behaviour. In PUG, this
is achieved by encoding the performance problem as part of the verification condition;
GKLEE checks for these conditions during dynamic symbolic execution. Inferring unnec-
essary synchronisation barriers is another performance problem that could be detected
automatically. Extensions to this work would consider encoding GPU microarchitectural
features, such as the size of shared memory, as part of the verification condition.

Kernels from the PolyBench/GPU suite [GGXS+12] were amongst the most difficult
to automatically infer invariants due to deep loop nesting and non-trivial loop condi-
tions. The kernels were automatically parallelised and generated from sequential code
using polyhedral methods [ALSU06, chap. 11]. Hence it should be possible to exploit the
knowledge used by the auto-parallelising tool to automatically generate invariants required
for race-freedom. More speculatively, a verifier using the performance tuning techniques
above may be able to guide an auto-parallelising tool or autotuning framework to find
high-performance implementations without having to execute many candidate implemen-
tations.

6.4. Summary

We have developed scalable verification techniques by studying the characteristics of pre-
cision, performance and automation in the context of data-parallel programs. Verification
cannot build perfect software, but it can be a powerful and complementary technique for
building better software. We offer the results in this thesis as a step towards practical
verification.

173

Bibliography

[AH90] Sarita V. Adve and Mark D. Hill. Weak Ordering – A New Definition. In
Proceedings of the 17th International Symposium on Computer Architecture,
ISCA ’90, 1990. (Cited on page 155.)

[AKPW83] John R. Allen, Ken Kennedy, Carrie Porterfield, and Joe D. Warren. Con-
version of Control Dependence to Data Dependence. In Proceedings of the
10th ACM Symposium on Principles of Programming Languages, POPL ’83,
1983. (Cited on page 31.)

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Pearson Education, Inc, 2nd edition, 2006.
(Cited on pages 42 and 173.)

[AMD] AMD. Accelerated Parallel Processing SDK. http://developer.amd.com/
tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-
app-sdk/, accessed September 1, 2014. (Cited on pages 50 and 169.)

[And11] Marc Andreessen. Why Software is Eating the World. The Wall Street Jour-
nal, 2011. (Cited on page 11.)

[BBC+10] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R.
Engler. A Few Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World. Communications of the ACM, 53(2):66–75, 2010.
(Cited on page 43.)

[BBC+14] Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis
Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Daniel Liew, and Shaz
Qadeer. Engineering a Static Verification Tool for GPU Kernels. In Proceed-
ings of the 26th International Conference on Computer Aided Verification,
CAV ’14, 2014. (Cited on pages 13, 30, 31, 34, 37, 39, 43, 53, 59, 88, 113,
and 171.)

174

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In Proceedings of the 4th International Conference on
Formal Methods for Components and Objects, FMCO ’05, 2005. (Cited on
pages 16 and 31.)

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, De-
jan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In
Proceedings of the 23rd International Conference on Computer Aided Verifi-
cation, CAV ’11, 2011. (Cited on page 49.)

[BCD+12] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul
Thomson. GPUVerify: a Verifier for GPU Kernels. In Proceedings of the
ACM International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’12, 2012. (Cited on pages 13, 15, 25,
30, 31, 33, 34, 37, 39, 42, 53, 58, 61, 65, 84, 85, 95, 106, 110, 123, and 151.)

[BD14] Ethel Bardsley and Alastair F. Donaldson. Warps and Atomics: Beyond
Barrier Synchronization in the Verification of GPU Kernels. In NASA Formal
Methods Workshop, 2014. (Cited on pages 39, 42, and 172.)

[BDW14] Ethel Bardsley, Alastair F. Donaldson, and John Wickerson. KernelInter-
ceptor: automating GPU kernel verification by intercepting and generalising
kernel parameters. In Proceedings of the International Workshop on OpenCL,
IWOCL ’14, 2014. (Cited on pages 14 and 60.)

[BH05] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments Revisited:
A Ten-Year Perspective on the Industrial Application of Formal Methods.
In Proceedings of the 10th International Workshop on Formal Methods for
Industrial Critical Systems, FMICS ’05, 2005. (Cited on page 12.)

[BHM14] Stefan Blom, Marieke Huisman, and Matej Mihelčić. Specification and ver-
ification of GPGPU programs. Science of Computer Programming, 2014.
(Cited on pages 28 and 128.)

[BK82] Richard P. Brent and H. T. Kung. A Regular Layout for Parallel Adders.
IEEE Transactions on Computers, 31(3):260–264, 1982. (Cited on pages 118,
131, and 160.)

175

[BL05] Michael Barnett and K. Rustan M. Leino. Weakest-Precondition of Unstruc-
tured Programs. In Proceedings of the 6th ACM Workshop on Program analy-
sis for Software Tools and Engineering, PASTE ’05, 2005. (Cited on pages 47,
49, and 69.)

[Ble93] Guy E. Blelloch. Prefix Sums and Their Applications. In John H. Reif,
editor, Synthesis of Parallel Algorithms. Morgan Kaufmann, 1993. (Cited on
pages 88, 90, 93, 131, 160, and 169.)

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Pro-
gramming System: An Overview. In Construction and Analysis of Safe,
Secure and Interoperable Smart devices, volume 3362 of Lecture Notes in
Computer Science, pages 49–69. Springer, 2005. (Cited on page 16.)

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer,
1st edition, 2007. (Cited on page 16.)

[BOA09] Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient Stream Compaction
on Wide SIMD Many-Core Architectures. In Proceedings of the Conference
on High Performance Graphics, HPG ’09, 2009. (Cited on pages 89 and 131.)

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Carte-
sian Abstraction for Model Checking C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 2031 of Lecture Notes
in Computer Science, pages 268–283. Springer, 2001. (Cited on pages 80
and 81.)

[Bro87] Frederick P. Brooks, Jr. No Silver Bullet – Essence and Accidents of Software
Engineering. IEEE Computer, 20(4):10–19, 1987. (Cited on page 12.)

[BSW08] Michael Boyer, Kevin Skadron, and Westley Weimer. Automated Dynamic
Analysis of CUDA Programs. In Proceedings of the Third Workshop on Soft-
ware Tools for MultiCore Systems, 2008. (Cited on page 26.)

[BYF+09] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In
Proceedings of the IEEE International Symposium on Performance Analysis
of Systems, ISPASS ’09, 2009. (Cited on pages 51 and 169.)

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Approximation

176

of Fixpoints. In Proceedings of the 4th ACM Symposium on Principles of Pro-
gramming Languages, POPL ’14, 1977. (Cited on pages 81 and 82.)

[CCK11a] Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. Symbolic Cross-
checking of Floating-Point and SIMD Code. In Proceedigns of the European
Conference on Computer Systems, EuroSys ’11, 2011. (Cited on page 172.)

[CCK11b] Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. Symbolic Testing
of OpenCL Code. In Proceedings of the 7th International Haifa Verification
Conference on Hardware and Software: Verification and Testing, HVC ’11,
2011. (Cited on page 27.)

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’08, 2008. (Cited on page 123.)

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC:
A Practical System for Verifying Concurrent C. In Proceedings of the 22nd In-
ternational Conference on Theorem Proving in Higher Order Logics, TPHOLs
’09, 2009. (Cited on page 18.)

[CDK+13] Nathan Chong, Alastair F. Donaldson, Paul H. J. Kelly, Jeroen Ketema, and
Shaz Qadeer. Barrier Invariants: a Shared State Abstraction for the Analysis
of Data-Dependent GPU Kernels. In Proceedings of the ACM International
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA ’13, 2013. (Cited on pages 13, 14, 51, 84, 93, 94, 107,
and 166.)

[CDK14] Nathan Chong, Alastair F. Donaldson, and Jeroen Ketema. A Sound and
Complete Abstraction for Reasoning About Parallel Prefix Sums. In Proceed-
ings of the 41st ACM Symposium on Principles of Programming Languages,
POPL ’14, 2014. (Cited on pages 13, 14, 65, and 130.)

[CDKQ13] Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz
Qadeer. Interleaving and Lock-Step Semantics for Analysis and Verifica-
tion of GPU kernels. In Proceedings of the 22nd European Symposium on
Programming, ESOP ’13, 2013. (Cited on pages 32, 39, and 42.)

177

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided Abstraction Refinement for Symbolic Model
Checking. Journal of the ACM, 50(5):752–794, 2003. (Cited on page 81.)

[CGLR13] Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and Zvonimir Raka-
marić. Formal Analysis of GPU Programs with Atomics via Conflict-Directed
Delay-Bounding. In NASA Formal Methods Workshop, 2013. (Cited on
page 172.)

[Cla] clang: a C language family frontend for LLVM. http://clang.llvm.org/,
accessed September 1, 2014. (Cited on page 42.)

[CMP04] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A Sim-
ple Method for Parameterized Verification of Cache Coherence Protocols.
In Proceedings of the 5th International Conference on Formal Methods in
Computer-Aided Design, FMCAD’04, 2004. (Cited on page 128.)

[CSLS09] Shuai Che, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia:
A Benchmark Suite for Heterogeneous Computing. In Proceedings of the
IEEE International Symposium on Workload Characterization, 2009. (Cited
on pages 51, 160, and 169.)

[DDLM13] Isil Dillig, Thomas Dillig, Boyang Li, and Ken L. McMillan. Inductive Invari-
ant Generation via Abductive Inference. In Proceedings of the ACM Inter-
national Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’13, 2013. (Cited on pages 80 and 82.)

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rüm-
mer. Software Verification Using k-Induction. In Proceedings of the 18th In-
ternational Conference on Static Analysis, SAS ’11, 2011. (Cited on pages 48
and 49.)

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976. (Cited
on page 15.)

[DKK+12] Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael
Tautschnig, and Thomas Wahl. Counterexample-guided abstraction refine-
ment for symmetric concurrent programs. Formal Methods in System Design,
41(1), 2012. (Cited on page 18.)

178

http://clang.llvm.org/

[DKKW11] Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, and Thomas
Wahl. Symmetry-aware Predicate Abstraction for Shared-Variable Concur-
rent Programs. In Proceedings of the 23rd International Conference on Com-
puter Aided Verification, CAV ’11, 2011. (Cited on page 18.)

[DKR11] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic
Analysis of DMA Races Using Model Checking and k-induction. Formal
Methods in System Design, 39(1):83–113, 2011. (Cited on page 34.)

[DLP79] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. Social Pro-
cesses and Proofs of Theorems and Programs. Communications of the ACM,
22(5):271–280, 1979. (Cited on pages 11 and 170.)

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 2008. (Cited on page 49.)

[dMB11] Leonardo de Moura and Nikolaj Bjørner. Satisfiability Modulo Theories:
Introduction and Applications. Communications of the ACM, 54(9):69–77,
2011. (Cited on page 16.)

[DMM+10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,
Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The
Scalable HeterOgeneous Computing (SHOC) Benchmark Suite. In Proceed-
ings of the 3rd Workshop on General-Purpose Computation on Graphics Pro-
cessing Units, 2010. (Cited on pages 51, 160, and 169.)

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover
for Program Checking. Journal of the ACM, 52(3):365–473, 2005. (Cited on
page 17.)

[Dow97] Mark Dowson. The Ariane 5 Software Failure. ACM SIGSOFT Software
Engineering Notes, 22(2):84–, 1997. (Cited on page 11.)

[ECGN01] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.
Dynamically Discovering Likely Program Invariants to Support Program Evo-
lution. IEEE Transactions on Software Engineering, 27(2):99–123, 2001.
(Cited on pages 80 and 83.)

179

[EGK90] O. Eğecioğlu, E. Gallopoulos, and C. Koç. A Parallel Method for Fast and
Practical High-order Newton Interpolation. BIT Numerical Mathematics,
30:268–288, 1990. (Cited on page 131.)

[Fet88] James H. Fetzer. Program Verification: The Very Idea. Communications of
the ACM, 31(9):1048–1063, 1988. (Cited on page 170.)

[FJL01] Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. Annotation infer-
ence for modular checkers. Information Processing Letters, 77(2-4):97–108,
2001. (Cited on pages 48 and 80.)

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an Annotation Assistant
for ESC/Java. In Proceedings of the International Symposium of Formal
Methods Europe, FME ’01, 2001. (Cited on pages 48, 80, 81, and 167.)

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended Static Checking for Java. In
Proceedings of the ACM Conference on Programming Language Design and
Implementation, PLDI ’02, 2002. (Cited on page 16.)

[Flo67] Robert W. Floyd. Assigning Meanings to Programs. Mathematical Aspects
of Computer Science, 19:19–32, 1967. (Cited on pages 15, 45, and 47.)

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program De-
pendence Graph and Its Use in Optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–349, 1987. (Cited on page 59.)

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — Where Programs
Meet Provers. In Proceedings of the 22nd European Symposium on Program-
ming, ESOP ’13, 2013. (Cited on page 16.)

[GGXS+12] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and
John Cavazos. Auto-tuning a High-Level Language Targeted to GPU Codes.
In Proceedings of the IEEE Conference on Innovative Parallel Computing,
InPar ’12, 2012. (Cited on pages 51, 169, and 173.)

[GK10] Michael Garland and David B. Kirk. Understanding Throughput-Oriented
Architectures. Communications of the ACM, 53:58–66, 2010. (Cited on
page 18.)

180

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface. MIT Press, 2nd
edition, 1999. (Cited on page 149.)

[God97] Patrice Godefroid. Model Checking for Programming Languages Using
VeriSoft. In Proceedings of the 24th ACM Symposium on Principles of Pro-
gramming Languages, POPL ’97, 1997. (Cited on page 18.)

[GR09] Ashutosh Gupta and Andrey Rybalchenko. InvGen: An Efficient Invariant
Generator. In Proceedings of the 21st International Conference on Computer
Aided Verification, CAV ’09, 2009. (Cited on page 80.)

[GS97] Susanne Graf and Hassen Saïdi. Construction of Abstract State Graphs with
PVS. In Proceedings of the 9th International Conference on Computer Aided
Verification, CAV ’97, 1997. (Cited on page 80.)

[Hin04] Ralf Hinze. An Algebra of Scans. In Mathematics of Program Construction,
Lecture Notes in Computer Science, pages 186–210. Springer, 2004. (Cited
on page 166.)

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commu-
nications of the ACM, 12(10):576–580, 1969. (Cited on page 15.)

[Hoa03] C. A. R. Hoare. The Verifying Compiler: A Grand Challenge for Computing
Research. Journal of the ACM, 50(1):63–69, 2003. (Cited on page 12.)

[Hor05] Daniel Horn. Stream Reduction Operations for GPGPU Applications. In
Matt Pharr, editor, GPU Gems 2. Addison-Wesley, 2005. (Cited on page 88.)

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 5th edition, 2011. (Cited on pages 18
and 155.)

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning About Systems. Cambridge University Press, 2nd edition, 2004.
(Cited on page 89.)

[HS86] Daniel W. Hillis and Guy L. Steele, Jr. Data Parallel Algorithms. Commu-
nications of the ACM, 29(12):1170–1183, 1986. (Cited on pages 18 and 121.)

181

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel Prefix
Sum (Scan) with CUDA. In Hubert Nguyen, editor, GPU Gems 3. Addison-
Wesley, 2007. (Cited on pages 88, 90, 131, and 188.)

[Jac12] Paul Jaccard. The Distribution of the Flora in the Alpine Zone. New Phy-
tologist, 11(2):37–50, 1912. (Cited on page 78.)

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A Library of Numerical Ab-
stract Domains for Static Analysis. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV ’09, 2009. (Cited on
pages 80 and 81.)

[JSS14] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan. Abstract
Acceleration of General Linear Loops. In Proceedings of the 41st ACM Sym-
posium on Principles of Programming Languages, POPL ’14, 2014. (Cited
on page 82.)

[KD14] Jeroen Ketema and Alastair F. Donaldson. Automatic Termination Analysis
for GPU Kernels. In Proceedings of the 14th International Workshop on
Termination, 2014. (Cited on page 43.)

[Khr13a] Khronos OpenCL Working Group. The OpenCL C Specification (Ver-
sion 2.0), 2013. (Cited on page 42.)

[Khr13b] Khronos OpenCL Working Group. The OpenCL Specification (Version 2.0),
2013. (Cited on pages 22, 25, 37, 51, 155, and 158.)

[KMM11] Rajesh Karmani, P. Madhusudan, and Brandon Moore. Thread contracts for
safe parallelism. In Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming, PPoPP ’11, 2011. (Cited on page 127.)

[Knu74] Donald E. Knuth. Computer Programming as an Art. Communications of
the ACM, 17(12):667–673, 1974. (Cited on page 11.)

[Knu98] Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-
Wesley, 2nd edition, 1998. (Cited on page 165.)

[KS73] Peter M. Kogge and Harold S. Stone. A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations. IEEE Transactions on
Computers, C-22(8):786–793, 1973. (Cited on pages 121, 131, and 160.)

182

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, 1st edition, 2008. (Cited on page 16.)

[KV09] Laura Kovács and Andrei Voronkov. Finding Loop Invariants for Programs
over Arrays Using a Theorem Prover. In Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering, FASE ’09,
2009. (Cited on page 82.)

[Lam79] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Ex-
ecutes Multiprocess Programs. IEEE Transactions on Computers, 28(9):690–
691, 1979. (Cited on page 155.)

[Lei10] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, LPAR ’10, 2010. (Cited
on page 16.)

[Lev93] Nancy G. Leveson. An Investigation of the Therac-25 Accidents. IEEE Com-
puter, 26:18–41, 1993. (Cited on page 11.)

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation.
Journal of the ACM, 27(4):831–838, 1980. (Cited on page 131.)

[LG10] Guodong Li and Ganesh Gopalakrishnan. Scalable SMT-based Verification of
GPU Kernel Functions. In Proceedings of the 18th ACM International Sym-
posium on the Foundations of Software Engineering, FSE ’18, 2010. (Cited
on pages 27, 29, 32, 124, 156, 157, 171, and 172.)

[LGA+12] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajest Gupta, Ranjit Jhala,
and Sorin Lerner. Verifying GPU Kernels by Test Amplification. In Pro-
ceedings of the 33rd ACM Conference on Programming Language Design and
Implementation, PLDI ’12, 2012. (Cited on pages 28, 29, 124, 134, and 156.)

[LLG12] Peng Li, Guodong Li, and Ganesh Gopalakrishnan. Parametric flows: Au-
tomated behavior equivalencing for symbolic analysis of races in CUDA pro-
grams. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’12, 2012. (Cited on
page 123.)

[LLG14] Peng Li, Guodong Li, and Ganesh Gopalakrishnan. Practical Symbolic Race
Checking of GPU Programs. In Proceedings of the International Conference

183

for High Performance Computing, Networking, Storage and Analysis, SC ’14,
2014. (Cited on page 27.)

[LLS+12] Guodong Li, Peng Li, Geoffrey Sawaya, Ganesh Gopalakrishnan, Indradeep
Ghosh, and Sreeranga P. Rajan. GKLEE: Concolic Verification and Test
Generation for GPUs. In Proceedings of the 17th ACM Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’12, 2012. (Cited on
pages 27, 123, 171, and 172.)

[LMS09] K. Rustan M. Leino, Peter Müller, and Jans Smans. Verification of Concur-
rent Programs with Chalice. In Foundations of Security Analysis and De-
sign V, volume 5705 of Lecture Notes in Computer Science, pages 195–222.
Springer, 2009. (Cited on pages 18 and 29.)

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from Mis-
takes — A Comprehensive Study on Real World Concurrency Bug Charac-
teristics. In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’08,
2008. (Cited on page 17.)

[Mac01] Donald Mackenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT
Press, 1st edition, 2001. (Cited on pages 12, 16, and 170.)

[McC04] Steve McConnell. Code Complete. Microsoft Press, 2nd edition, 2004. (Cited
on pages 11 and 12.)

[McM06] Ken L. McMillan. Lazy Abstraction with Interpolants. In Proceedings of
the 18th International Conference on Computer Aided Verification, CAV ’06,
2006. (Cited on pages 80 and 82.)

[Mic] Microsoft Corporation. C++ AMP Sample Projects for Download (MSDN
blog). http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/
30/c-amp-sample-projects-for-download.aspx, accessed September 1,
2014. (Cited on pages 51 and 169.)

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Nainar Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI ’08, 2008.
(Cited on page 18.)

184

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx

[NE02] Jeremy W. Nimmer and Michael D. Ernst. Invariant Inference for Static
Checking: An Empirical Evaluation. In Proceedings of the 10th ACM Inter-
national Symposium on the Foundations of Software Engineering, FSE ’02,
2002. (Cited on page 83.)

[Nel81] Greg Nelson. Techniques for Program Verification. Technical Report CSL-
81-10, Xerox Palo Alto Research Center, June 1981. (Cited on page 170.)

[NVI] NVIDIA. CUDA Code Samples. https://developer.nvidia.com/gpu-
computing-sdk, accessed September 1, 2014. (Cited on pages 51, 56,
and 169.)

[NVI09] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
Whitepaper, 2009. (Cited on page 18.)

[NVI12a] NVIDIA. CUDA C Programming Guide (Version 5.0), 2012. (Cited on
pages 19, 25, 37, 43, 51, 155, and 158.)

[NVI12b] NVIDIA. CUDA-MEMCHECK: User Manual (Version 5.0), October 2012.
(Cited on page 26.)

[PFW13] Nadia Polikarpova, Carlo A. Furia, and Scott West. To Run What No One
Has Run Before: Executing an Intermediate Verification Language. In Pro-
ceedings of the 4th International Conference on Runtime Verification, RV ’13,
2013. (Cited on page 71.)

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
(Cited on page 137.)

[Res02] Research Triangle Institute. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing. Technical Report Planning Report 02-3, National
Institute of Standards and Technology, May 2002. (Cited on page 12.)

[Rey02] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In Proceedings of the IEEE Symposium on Logic in Computer
Science, LICS ’02, 2002. (Cited on page 28.)

[Ric53] Henry G. Rice. Classes of Recursively Enumerable Sets and Their Decision
Problems. Transactions of the American Mathematical Society, 74:358–366,
1953. (Cited on page 16.)

185

https://developer.nvidia.com/gpu-computing-sdk
https://developer.nvidia.com/gpu-computing-sdk

[Rig] Rightware. Basemark CL. http://www.rightware.com/benchmarking-
software/basemark-cl/, accessed September 1, 2014. (Cited on pages 51
and 169.)

[Ser13] Igor Sergeev. On the complexity of parallel prefix circuits. Technical Re-
port TR13-041, Electronic Colloquium on Computational Complexity, 2013.
(Cited on page 143.)

[She11] Mary Sheeran. Functional and dynamic programming in the design of parallel
prefix networks. Journal of Functional Programming, 21(1):59–114, 2011.
(Cited on pages 131 and 163.)

[SHG09] Nadathur Satish, Mark Harris, and Michael Garland. Designing Efficient
Sorting Algorithms for Manycore GPUs. In Proceedings of the 2009 IEEE
International Symposium on Parallel and Distributed Processing, IPDPS ’09,
2009. (Cited on page 131.)

[SHZO07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
primitives for GPU computing. In Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH ’07,
2007. (Cited on page 88.)

[Skl60] Jack Sklansky. Conditional-Sum Addition Logic. IRE Transactions on Elec-
tronic Computers, EC-9:226–231, 1960. (Cited on pages 131 and 160.)

[SRS+12] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. Parboil: A
Revised Benchmark Suite for Scientific and Commercial Throughput Com-
puting. Technical Report IMPACT-12-01, University of Illinois at Urbana-
Champaign, March 2012. (Cited on pages 51, 160, and 169.)

[Ste96] Bjarne Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings
of the 23rd ACM Symposium on Principles of Programming Languages, POPL
’96, 1996. (Cited on page 42.)

[SZ12] Stephen F. Siegel and Timothy K. Zirkel. Loop Invariant Symbolic Execution
for Parallel Programs. In Proceedings of the 13th international conference on
Verification, Model Checking, and Abstract Interpretation, VMCAI ’12, 2012.
(Cited on page 128.)

186

http://www.rightware.com/benchmarking-software/basemark-cl/
http://www.rightware.com/benchmarking-software/basemark-cl/

[TDB14] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency Test-
ing Using Schedule Bounding: An Empirical Study. In Proceedings of the
19th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’14, 2014. (Cited on page 18.)

[TSL10] Stavros Tripakis, Christos Stergiou, and Roberto Lublinerman. Checking
Non-Interference in SPMD Programs. In Proceedings of the 2nd USENIX
Workshop on Hot Topics in Parallelism, HotPar ’10, 2010. (Cited on pages 29
and 156.)

[U.S13] U.S. Securities and Exchange Commission. In the Matter of Knight Capital
Americas LLC, October 2013. http://www.sec.gov/litigation/admin/
2013/34-70694.pdf, accessed September 1, 2014. (Cited on page 11.)

[Vaf08] Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical
Report UCAM-CL-TR-726, University of Cambridge, Computer Laboratory,
July 2008. (Cited on page 18.)

[Vaf14] Viktor Vafeiadis. Relaxed Separation Logic (Tutorial at POPL ’14), January
2014. http://www.mpi-sws.org/~viktor/slides/rsl-tutorial.pdf, ac-
cessed September 1, 2014. (Cited on page 155.)

[Voi08] Janis Voigtländer. Much Ado about Two (Pearl): A Pearl on Parallel Prefix
Computation. In Proceedings of the 35th ACM Symposium on Principles of
Programming Languages, POPL ’08, 2008. (Cited on pages 160 and 163.)

[Wad89] Philip Wadler. Theorems for Free! In Proceedings of the 4th International
Conference on Functional Programming Languages and Computer Architec-
ture, FPCA ’89, 1989. (Cited on page 163.)

[War12] Henry S. Warren. Hacker’s Delight. Addison-Wesley, 2nd edition, 2012.
(Cited on page 65.)

[ZRQA11] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. GRace: A
Low-Overhead Mechanism for Detecting Data Races in GPU Programs. In
Proceedings of the 16th ACM Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’11, 2011. (Cited on page 26.)

187

http://www.sec.gov/litigation/admin/2013/34-70694.pdf
http://www.sec.gov/litigation/admin/2013/34-70694.pdf
http://www.mpi-sws.org/~viktor/slides/rsl-tutorial.pdf

A. Permissions

Figure 4.3 reproduces a figure from GPU Gems 3 [HSO07]. Permission granted by M. Har-
ris (author) and Pearson (publisher).

188

	Introduction
	Motivation
	Contributions
	Publications
	Formal Acknowledgements

	Race Checking for GPU Kernels
	A Brief Review
	Program Verification
	The Challenge of Concurrency
	Data-Parallel Programs
	Data Races and Barrier Divergence in GPU Kernels

	Race Checking Techniques for GPU Kernels
	Dynamic Instrumentation
	Dynamic Symbolic Execution
	Hybrid Techniques
	Static Verification

	Kernel Transformation
	Predication
	Two-Thread Reduction with Shared State Abstraction
	Race Instrumentation
	Kernel Transformation Summary and Example
	Further Considerations

	Summary

	Scaling Up Candidate-Based Invariant Generation
	Preliminaries
	Loop Invariants
	Candidate-Based Invariant Generation using Houdini
	Invariant Generation in GPUVerify

	Benchmarks
	Candidate Generation Rules for GPU Kernels
	Invariants for Handling Race Instrumentation
	Example Invariants for Access Patterns
	Invariants for Handling Uniformity
	Methodology
	Rules

	Evolution of Precision and Performance
	Accelerating Houdini using Under-Approximation
	Exploiting Under-Approximation
	Parallel Refutation Sharing

	Experimental Evaluation
	Potential for Precision and Performance Improvement
	Evaluating Precision
	Evaluating Refutation Engine Performance

	Related Work
	Summary

	Barrier Invariants: Precise Reasoning for Data-Dependent Kernels
	The Need for Barrier Invariants
	Stream Compaction Example
	The Two-Thread Reduction with Barrier Invariants
	Syntax
	Semantics
	Soundness
	Verification Method
	Relation to Equality Abstraction

	Barrier Invariants for Stream Compaction
	Blelloch Prescan
	Brent-Kung Scan
	Kogge-Stone Scan

	Experimental Evaluation
	Modular Verification of Stream Compaction
	Staged Verification of Blelloch and Brent-Kung
	Staged Verification of Kogge-Stone

	Related Work
	Summary

	The Interval of Summations: Functional Correctness for Prefix Sums
	Prefix Sums and Their Applications
	Sequential Setting
	Syntax
	Typing
	Semantics
	The Interval of Summations
	Soundness and Completeness

	Data-Parallel Setting
	Syntax, Typing and Semantics
	Soundness and Completeness
	Data Race-Freedom

	Verification Method
	Experimental Evaluation
	Verification of Data Race-Freedom
	Dynamic Analysis

	Related Work
	Summary

	Conclusions and Open Problems
	Contributions
	Limitations
	Future Work
	Summary

	Bibliography
	Permissions

