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We present Arm’s efforts in verifying the specification and prototype reference implementation of the Realm
Management Monitor (RMM), an essential firmware component of Arm Confidential Computing Architecture
(Arm CCA), the recently-announced Confidential Computing technologies incorporated in the Armv9-A
architecture. Arm CCA introduced the Realm Management Extension (RME), an architectural extension for
Armv9-A, and a technology that will eventually be deployed in hundreds of millions of devices. Given the
security-critical nature of the RMM, and its taxing threat model, we use a combination of interactive theorem
proving, model checking, and concurrency-aware testing to validate and verify security and safety properties
of both the specification and a prototype implementation of the RMM. Crucially, our verification efforts were,
and are still being, developed and refined contemporaneously with active development of both specification
and implementation, and have been adopted by Arm’s product teams.

We describe our major achievements, realized through the application of formal techniques, as well as
challenges that remain for future work. We believe that the work reported in this paper is the most thorough
application of formal techniques to the design and implementation of any current commercially-viable
Confidential Computing implementation, setting a new high-water mark for work in this area.
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1 INTRODUCTION
This paper describes Arm’s use of a range of formal techniques in validating the specification
of, and thereafter verifying a C-language implementation of, a new security-critical firmware
called Realm Management Monitor (RMM). This firmware is a central component of the recently-
announced Arm®Confidential Computing Architecture (Arm CCA); a technology comprising a
reference software architecture and an architectural extension for the Armv9-A profile. Arm CCA
will eventually be deployed in hundreds of millions of devices worldwide. Formal techniques were
used to not only validate and verify design and implementation decisions throughout development,
but also influenced the way that the RMM was specified and designed from the outset, acting as a
guiding principle by Arm’s product teams. We will provide a detailed description of our validation
and verification methodology, but start by providing additional context needed to understand the
significance of our decision to deploy formal techniques in this domain.

1.1 The Rise of Confidential Computing
Most mainstream computer architectures are now adopting architectural support for Confidential
Computing, largely driven by the rise of Cloud computing, wherein potentially sensitive compu-
tations and datasets are now routinely delegated to a Cloud host. This delegation is not without
risk, as it requires sensitive computations and datasets be shared with a third-party, introducing a
route through which data may be leaked, and computations manipulated, by an attacker. Whilst the
Cloud-host is one obvious potential attacker, most hosted computations take place on co-tenanted
machines, wherein multiple computations, owned by mutually-mistrusting parties, are executed
concurrently, with co-tenants potentially trying to exploit security vulnerabilities in the isolating
hypervisor. Note that this is not a theoretical risk, as severe security vulnerabilities have been
identified in hypervisors in the past [Cook et al. 2020; Pék et al. 2013]. Given this, industry has
turned to Confidential Computing technologies rooted in trusted hardware as the primary solution,
with a blend of features driven by security concerns associated with delegated computation.

Protected execution environments. Each of these solutions introduces a protected execution envi-
ronment as a new primitive, called Secure Enclaves, Protected Virtual Machines, Realms, Trusted
Execution Environments, or similar. (Henceforth, we use “Realm” for the Arm CCA-specific primi-
tive and “protected execution environment” as a generic collective noun.) These protected execution
environments are intended to provide strong confidentiality and integrity guarantees to the code
and data they host, preventing spying or interference by unauthorized parties. Moreover, these
guarantees should hold even in the face of a privileged adversary: untrusted operating systems,
hypervisors, and software executing in other protected execution environments are all assumed
malicious, with adversaries assumed capable of using system features—such as high-precision
timers—out-of-reach for a typical attacker. The Trusted Computing Base (TCB) of a protected exe-
cution environment is therefore minimized, comprising the contents of the protected execution
environment and its implementation in hardware and firmware.

Remote Attestation. Each Confidential Computing technology is usually accompanied with
support for Remote Attestation [Coker et al. 2011]; a mechanism supported by cryptography
through which a skeptical third-party may deduce, with high-confidence, that a legitimate protected
execution environment, loaded with a known initial software image, correctly configured, exists
on an otherwise untrusted third-party’s machine.

Together, these aspects allow a skeptical party to securely delegate sensitive computations to
untrusted, third-party machines and receive high-levels of assurance that these computations
are protected from prying or undetected interference by co-tenants and machine owner alike.
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Fig. 1. An architectural schematic of an Arm CCA-enabled PE

This is exactly what is required for solving security and privacy challenges associated with Cloud
computing. These assurances, however, only hold if the protected execution environment is correctly
specified and implemented. Whilst the semiconductor industry in general, and Arm in particular,
makes wide use of formal methods for checking hardware implementations, one interesting aspect
of Confidential Computing technologies (including Arm CCA) is the use of both hardware and
firmware in their implementations. As a result, whilst hardware engineers are already primed
to think of formal verification as a routine aspect of any engineering flow, new and unfamiliar
techniques and tools need to be deployed to accommodate firmware verification.

1.2 Arm Confidential Computing Architecture
We now introduce relevant aspects of Arm CCA; more can be learned from [Arm Ltd. 2021].
Execution on an Armv8-A and Armv9-A processing element1 (PE) is associated with an exception
level, EL0 through to EL3, denoting relative privilege. User-space executes at EL0, operating system
kernels at EL1, hypervisors at EL2, and privileged, low-level firmware at EL3. Executing at an
elevated privilege level allows, for example, modifications to important system registers. Memory
is partitioned into granules of some fixed size, the unit of memory managed by the architecture.
The Arm TrustZone® [Arm Ltd. 2008] extension introduced two architectural security states:

Secure and Non-secure, with physical memory correspondingly bifurcated into Secure and Non-
secure Physical Address Spaces (PASs). An additional PAS bit propagates throughout the memory
subsystem, enforcing memory access controls based on the combination of the current PE security
state and the PAS being accessed. An Arm A-profile PE is therefore split into two logicalworlds, with
the Secure world hosting trusted applications executing under a trusted operating system [Linaro
Ltd. 2022a]; and the Non-secure world hosting a rich operating system (typically Android or
Linux). Trusted applications offer sensitive services, such as cryptographic key management, to less
trusted software executing in the Non-secure world, and remain protected from it. Communication
and context switching between worlds is handled by the monitor [Linaro Ltd. 2022b], privileged
firmware executing at EL3.

Typical Arm TrustZone deployments are largely static: memory is assigned to the Secure world
on device boot, and the Secure world cannot be dynamically resized thereafter. The Secure world
also tends to be memory-constrained, since it hosts a small number of trusted applications which
are provisioned onto the device by the device manufacturer or system integrator.
In Figure 1 we provide a schematic of a future Arm CCA enabled PE under Armv9.1-A. The

hardware changes associated with Arm CCA are collectively called the Realm Management Ex-
tensions (RME); intuitively, these generalize Arm TrustZone. The split between the Secure and
Non-secure world is still present (protecting trusted applications) but an additional two security

1Processing elements generalize CPUs, as other components in the Arm system architecture can also compute.
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states and associated PASs have been introduced: Realm and Root. As such, Arm CCA-enabled
PEs are logically split into four worlds instead of two. RME also introduces additional memory
access controls, called Granule Protection Checks (GPCs), which gate access to PASs depending on
the Security state of the accessing PE. RME also enables memory to be dynamically transitioned
between PASs, importantly for Arm CCA between the Non-secure and the Realm PASs, allowing
system resources to be partitioned according to the demands of workloads in different Security
states. This transitioning is performed by the monitor, which is now moved into its own dedicated
Root world.
Realm world hosts eponymous Realms—Arm CCA’s protected execution environments—with

each Realm hosting a protected virtual machine spanning EL1 and EL0 of the Realm world. Realms
can be dynamically spawned and torn down, marking a departure from the static trusted applications
of Arm TrustZone, and are provisioned and administered by software executing in the Non-secure
world, rather than by the platform manufacturer, to support Confidential Computing use-cases.
Realms are assumed mutually distrusting, as are Realm and Secure world, with both also distrusting
the Non-secure world. The architecture provides protections for attacks coming from other Realms
or from Secure or Non-secure worlds.
To administer Realms, Arm CCA introduces a new privileged firmware component called the

Realm Management Monitor (RMM), executing at EL2 in the Realm world, and depicted in orange
in Figure 1. The RMM acts as a separation kernel isolating Realms from each other. Responsibility
for allocation of memory and CPU resources used by Realms remains with the untrusted hypervisor
executing in the Non-secure state, which we call the Host. Arm CCA splits policy from mechanism,
with the Host retaining control of resources, whether allocation of memory to Realm, or scheduling
CPU cycles to a Realm, making use of the RMM proxy to enact its requests. To do this, the RMM
presents an ABI, called the Realm Management Interface (RMI), which enables the Host to manage
and schedule Realms indirectly. Note that as all scheduling and resourcing decisions for Realms
remain with untrusted code executing in the Non-secure world, and Realms do not, in general,
have any form of availability guarantee. A separate ABI, called the Realm Services Interface (RSI), is
presented to the Realm. For example, the RSI can generate attestation evidence. For the majority of
this paper we shall concentrate on the RMI interface, only mentioning RSI when necessary.

1.3 Scope and Contributions
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Fig. 2. The RMM verification flow and associated tools.
Arm-published artifacts are shown in yellow, whilst
our verification artifacts are shown in blue. Steps that
require user input are labeled with a stick figure.

Here we focus exclusively on the specification
and implementation of the RMM and its inter-
actions with hardware, establishing important
guarantees derived from the specification, as
well as the adherence of Arm’s prototype RMM
implementation to the specification. We ignore
Remote Attestation: Arm CCA commits to a
common attestation token format, but as an ar-
chitecture does not mandate any particular pro-
tocol. RME hardware changes are handled by
Arm’s established hardware verification flows.

Importantly, we developed verification tech-
niques for the RMM contemporaneously with
the development of the specification and im-
plementation prototypes, adopting formal tech-
niques early in the design process. While our
ultimate goal is to ensure the safety and security of the final specification and implementation, our
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methodologies have excelled at revealing inconsistencies, errors, and imprecision in both specifica-
tion and prototype implementation. Early adoption of formal techniques requires methodologies
that can readily adapt to change, and our tooling must be a good match for the different artifacts
under verification. In Figure 2 we present tools that we use to interface between the specification
and the implementation, and verification artifacts that we produce to validate them. A Machine
Readable Specification (MRS) is central to this methodology: Arm architects use the MRS (shown left
in Figure 2) to specify the RMM ABI and an Arm-internal tool, called doctool, is used to generate
the public RMM PDF documentation [Arm Ltd. 2022c] from the MRS. The behavior of the RMM
ABI is specified using pre/postconditions, and is discussed in Sec. 2.

We have paid special interest to validating the RMMABI, using a formal model in the HOL4 proof
assistant (shown upper right in Figure 2); validating the coherence of the specification, proving
that important invariants are enforced by the specification, as well as desirable security properties
for Realms. This model, discussed in Sec. 3, is produced by hand, through careful interpretation
of the specification. We have worked closely with product engineers to keep up-to-date with
the specification and to validate updates thereof. Incomplete or under-specified details in the
specification have been reflected as educated assumptions within the HOL4 model. We expect our
formal model to be made publicly available alongside the RMM specification [Arm Ltd. 2022c].
Arm has developed a prototype C-language implementation of the RMM firmware (shown

right in Figure 2) to explore and validate RMM ABI design choices. This prototype has provided
a baseline contribution to the production version of the RMM, which is to be maintained by
TrustedFirmware.org. For now, C remains the established systems language choice for implementing
low-level firmware, such as the RMM. Viable alternatives are emerging, such as Rust, but Rust’s
in-built safety benefits must be carefully weighed against the downsides of having a much smaller
developer community, combined with a comparatively immature and limited choice of development
and verification tooling.

To verify the correctness of the RMM implementation with respect to the RMM specification, we
introduce an automated model checking workflow based on the C bounded model checker (CBMC)
[Kroening and Tautschnig 2014]. We automatically generate verification harnesses from the MRS
of the RMM, using an internal tool named autogen, as shown in Figure 2. The invariants discussed
in Sec. 3 are used to constrain the initial state, making model checking with CBMC tractable. We
also discuss how the states of abstract specification and concrete implementation are related and
how the result of a failed verification can aid in debugging the implementation and specification.
Importantly, since our workflow is automated, we can use the model checker as an early error
detection mechanism, as well as an enhanced debugging tool integrated into our product team’s
Continuous Integration (CI) flow. Our model checking workflow is expected to be released alongside
the RMM implementation.
The RMM implementation maintains RMM-private objects and data structures used for book-

keeping and Realm administration, which may be manipulated and queried by many different
concurrent callers, executing on different cores. For performance reasons, fine-grained locking
of objects is used, and in Sec. 5 we address the maintenance of the coherency and safety of the
internal RMM prototype implementation state. While the specification only describes commands as
being atomic (through the use of pre/postconditions) the implementation must mediate concurrent
accesses from different cores to the shared data structures maintained by the RMM, with locks
not only serving as a coordination mechanism, but as a critical aspect of the security of the
implementation. To avoid deadlocks, we impose a non-trivial strict lock ordering discipline for
commands: this is not a static ordering, with the order in which new objects are discovered in
the process and hence locks are taken dependent on the state of the RMM. To ensure the RMM
implementation is deadlock-free we use a combination of HOL4 theorem-proving, to verify that
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Table 1. Excerpted Realm abstract state specification (draft).

Name Type Description

ipa_width UInt64 IPA width in bits
measurements RmmRealmMeasurement[7] Realm measurements
measurements_algo RmmRealmMeasurementAlgorithm Algorithm used to compute Realm measurements
rec_index UInt64 Index of next REC to be created
rtt_base Address Realm Translation Table base address
rtt_level_start Int64 RTT starting level
rtt_num_start UInt64 Number of physically contiguous starting level RTTs
state RmmRealmState Lifecycle state
vmid Bits16 Virtual Machine Identifier

the discipline ensures deadlock-freedom, and model checking, to ensure that all commands respect
the discipline. Together, these results ensure the deadlock-freedom of the RMM implementation.

Finally, in Sec. 6 we present a debugging and introspection framework called Trusted Firmware
Explorer (TFX) whichwe use to gain empirical confidence in the correctness of the RMM in situations
which are not covered by our formal verification methodologies, such as interrupt injection and
specific or random concurrent executions of RMI commands. TFX processes the MRS and the RMM
C implementation, making it maintainable as the RMM specification and implementation evolve.

Together, these different verification efforts address the coherence of the specification and some
security guarantees; they address the correspondence of our prototype implementation with the
specification, as well as some non-functional correctness guarantees such as deadlock-freedom. For
the hardware-software interface, we implement our own testing and concurrency-aware validation
tools, which increase the confidence of the RMM implementations and can identify bugs early.
Whilst we have not yet achieved a full end-to-end formal security statement for Arm CCA—not to
mention that the RMM specification and prototype are still evolving—to the best of our knowledge
this is the most comprehensive formal and semi-formal analysis of a Confidential Computing
architecture, and in Sec. 8 we discuss future work that will further enhance our results.

2 RMM SPECIFICATION: PRECONDITIONS AND POSTCONDITIONS
The RMM specification [Arm Ltd. 2022c] provides a detailed description of the intent and operation
of the firmware component of the Arm CCA architecture. To that end, it describes the abstract
state managed by the firmware, as well as the ABI used to interact and manipulate this state. In
this section we provide a brief, high-level description of the specification, focusing on the elements
that are necessary to understand our work.

RMM-internal objects and data structures are queried and manipulated by the RMM in response
to syscall-like commands, exposed as binary interfaces, either issued to it by the Host, through the
Realm Management Interface (RMI), or by a Realm, through the Realm Services Interface (RSI). The
RMM specification describes the high-level RMM internal state, together with the behavior of the
RMM commands in terms of how they act on this state.

Abstract State Specification. The RMM abstract state consists of a number of data structures
managed by the RMM, including metadata that tracks and details memory granule usage within the
RMM. Table 1 provides an example of metadata used by the RMM to administer Realms, presented as
named fields or attributes of a structure, with a defined type, and a brief description of their purpose.
The specification also defines a number of predicates over, and auxiliary functions that make
modifications to, this abstract state. These predicates and functions are used in the specification of
the commands, as well as in the description of important RMM invariants.
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D3.2.5 RMI_GRANULE_DELEGATE
Delegates a Granule.

D3.2.5.1 Interface

D3.2.5.1.2 Input Values

Name Register Field Type Description
fid X0 [63:0] UInt64 Command FID
addr X1 [63:0] Address PA of the target Granule

D3.2.5.1.3 Output Values

Name Register Field Type Description
result X0 [63:0] ReturnCode Command return status

D3.2.5.2 Failure conditions
ID Condition
gran_align pre: !AddrIsGranuleAligned(addr)

post: ResultEqual(result,RMI_ERROR_INPUT)
(—— continued in the right column)

(—— from the left column)
gran_bound pre: !PaIsDelegable(addr)

post: ResultEqual(result,RMI_ERROR_INPUT)

gran_state pre: Granule(addr).state != UNDELEGATED

post: ResultEqual(result,RMI_ERROR_INPUT)

gran_pas pre: Granule(addr).pas != NS

post: ResultEqual(result,RMI_ERROR_INPUT)

D3.2.5.3 Success conditions

ID Post-condition
gran_state Granule(addr).state == DELEGATED

gran_pas Granule(addr).pas == REALM

D3.2.5.4 Footprint

ID Value
gran_state Granule(addr).state

gran_pas Granule(addr).pas

Fig. 3. Excerpted RMI_GRANULE_DELEGATE command specification (draft).

Table 2. Main data structures managed by the RMM.

Acronym Name Function

RD Realm Descriptor Representation of a Realm (see Table 1)
RTT Realm Translation Table Contains Translation Tables of Realms
REC Realm Execution Context Represents a virtual PE associated to a Realm
Data Realm’s Data Metadata for granules containing Realm’s data

A succinct description of
the most important RMM data
structures is provided in Ta-
ble 2. Most structures are self-
explanatory, with the possible
exception of RECs, which rep-
resent the virtual PEs associ-
ated with a Realm. REC struc-
tures are used to enter and exit Realm execution when the virtual PE is scheduled.

RMM ABI Specification. The behaviors of all RMM commands are defined via pre/postconditions,
with execution of each command potentially modifying a defined footprint of state elements,
thus making verification tractable. There are no undefined behaviors for command execution: all
commands are totally defined, covering both success and error cases (this is discussed in Sec. 3.4).
Commands are associated with an opcode, which uniquely identifies them, and the behavior of
each command, which is a function of the values of its arguments and state of the RMM when the
command is invoked.

In Figure 3 we show a simplified specification of the RMI_GRANULE_DELEGATE command, which
takes a single granule address as input from the Host (the addr parameter, in general purpose
register X1, is the physical address location of the granule to be delegated). If the corresponding
granule metadata is UNDELEGATED, meaning that the granule is not in the REALM PAS, and moreover
it is currently in the NS PAS, then the granule is moved to the REALM PAS.
The Failure conditions section of Figure 3 consists of pre/postcondition pairs, with one pair for

each possible error condition. Whilst each command’s specification could be manipulated into
a traditional Hoare-logic style triple, the style used within the RMM documentation is easier to
comprehend, with each condition dedicated to a single task, and it is also useful in the generation
of our verification harnesses (see Sec. 4). For example, the first failure case verifies the alignment of
the addr address, with the command returning a RMI_ERROR_INPUT error if this check fails. Other
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failure conditions are similar. Importantly, commands should be all-or-nothing in the sense that
error-raising commands do not modify the abstract state of the RMM, i.e., their footprint is empty.
The Success conditions section of Figure 3 describes the expected updates and state changes of

successful commands. Note that a command without a failure condition has by omission a true
precondition and therefore necessarily succeeds. Here, we see that the new PAS for the granule is
REALM, and the state is updated to DELEGATED, indicating that it is not actively in use by any Realm.
Note that the Footprint section of Figure 3 lists the set of RMM state attributes that are updated
on a successful execution of the command, and there is a requirement that all other RMM state
components are left unmodified by the command.

Machine Readable Specification. The example command specification presented in Figure 3
is an excerpt from a draft PDF of the RMM specification, generated from the Arm CCA MRS.
Each command is ultimately defined in a YAML file specifying the pre/postconditions, and other
information, such as a partial order describing the possible orders in which preconditions can be
checked. This MRS is the source for the verification harnesses (discussed in Sec. 4), providing a single
source of truth, and ensuring a tight correspondence between verification harnesses and specification.
Consequently, any update in the specification is automatically reflected in our verification flows.

3 RMMMODEL AND PROOFS
Sec. 2 described how pre/postconditions have been used to specify the RMM ABI. These assertions
are written in ASL [Reid 2016], Arm’s internal specification language. The ASL for the MRS is
parsed and type-checked, which helps to identify early issues within the specification. This section
describes how we have used theorem proving in HOL4 to further validate the RMM specification
and ensure that it satisfies important design requirements. Our HOL4 model operates at the level
of the RMM ABI, which is the basis for all RMM implementations. It is essential to get this ABI
right: flaws here could result in security vulnerabilities that affect every RMM implementation.
The HOL4 formalization and proofs have uncovered dozens of issues (ambiguities, under-specified
behavior and technical problems) within the RMM specification. We have been able to identify
these issues early in the design process, and thus accelerate the RMM specification’s evolution,
which has in turn reduced the need for more disruptive changes later on.

The RMM specification is predominantly axiomatic in style (using assertions instead of code),
and is intentionally highly abstract, prioritizing brevity, clarity and freedom from implementation
detail. A prescriptive operational semantics of RMM commands is undesirable at the specification
level, as it is important to not over-constrain the architecture or unduly influence how each
RMM implementation satisfies the requirements of the ABI. Although Arm is not providing an
operational model of the RMM, we would still like to explore, test and validate the high-level
specification by running flows (evaluating sequences of command calls) representing typical ABI
usage scenarios. This goal provided the initial motivation for constructing a HOL4 version of
the RMM specification. Proof assistants, such as HOL4, are very versatile and well suited to
rigorously formalizing (mirroring) the axiomatic MRS. We can develop and use custom written
HOL4 automation to animate the specification, providing a reliable means to explore RMM flows
and better understand the emergent behaviors of the RMM specification. In particular, we have
proved that the RMM specification preserves important invariant properties. It is infeasible to
achieve all of these results through the use of standard EDA tools.
Overall, HOL4 has been a good fit for verifying the RMM specification. While HOL4 lacks the

comparative ease of use of some fully-automated tooling (e.g., those based on SMT), it does have
a number of key advantages here: a flexible and expressive logic that supports a wide range of
specification styles and verification tasks (it is able to accurately model and verify high-level system
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properties); and the ability to overcome tractability issues through human guidance and ingenuity,
which can present a significant risk when relying on the abilities of full-automated tooling.

We provide an overview of the HOL4 specification in Sec. 3.1 and discuss model animation
in Sec. 3.2. We then present our main proof results in Sec. 3.3, which includes an important Realm
isolation property in Sec. 3.3.2. Finally, we discuss the topic of proof maintenance in Sec. 3.5, which
is especially relevant in a live product development setting.

3.1 HOL4 Model
There are three main parts to the HOL4 model:

(1) RMM command predicates. For example, RMI_COMMAND pre_state post_state is true iff an RMM
state pre_state can transition to state post_state by making a call to an RMI command.

(2) State assertions. For example, X 0 addr represents the set of all RMM states in which variable
addr is the current content of register X0.

(3) Primitive functions. For example, AddrIsGranuleAligned addr is true if addr is 4 KiB aligned.
The RMM command predicates are defined using the state assertions and primitive functions. At
the time of writing the specification was roughly 3.5 KLoC, and proof scripts were around 24 KLoC.
We have developed and maintained the HOL4 specification manually, with no auto-generation

from the MRS. There are two main reasons for this approach. Firstly, HOL4 auto-generation would
be time-consuming to develop and maintain, and potentially unreliable or disruptive. Using HOL4
expertise to manually fine-tune the specification has been important in facilitating proof work,
which has been the main priority. Secondly, both the HOL4 and the MRS specifications have been
under active development, and by choice have not always been fully aligned with each other: in
some cases, the HOL4 model has contained more detail, providing full definitions for most primitive
functions and including precise definitions for pre/postconditions that had only been sketched out
(using comments) within the latest MRS. In other cases, the HOL4 model has temporarily trailed
behind the evolving MRS while proofs and other work was completed. Allowing the HOL4 model
to freely move ahead of the MRS at times has provided an important feedback mechanism which
helped guide and inform specification choices within the MRS.

3.1.1 The State Space. The HOL4 model operates at a high level of abstraction; it does not incor-
porate low level details of the underlying Armv9-A architecture or micro-architecture. As such, the
state space, representing the RMM’s view of the world, contains just two components:
(1) An array of general purpose registers; and
(2) A finite collection of granules, represented by a finite map from PAs to a pair, consisting of

granule attributes and objects.
The model contains no details with regard to the underlying memory system, system registers,
exception levels or security states.2 Nevertheless, the HOL4 model does contain sufficient detail to
capture the key aspects of the RMM ABI and to reliably validate the MRS on which it is based.
For convenience, we use custom data types to represent various RMM granule objects. For

example, we use the HOL4 function type word9→RmmRttEntryState to represent Realm Translation
Table (RTT) objects, which are the (stage 2) page tables maintained by the RMM (see Sec. 3.1.3). We
could have adopted a more general approach here, modeling granules as raw 4KiB arrays, together
with object encoding and decoding functions. However, this less abstract approach would have
added complexity without obvious benefit.

2The RMM documentation contains sections of prose covering various architectural aspects of the design (for example,
Realm interrupts and exceptions). These details are not captured in the HOL4 model.
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Preconditions

Shared
X 0 RMI_GRANULE_DELEGATE
X 1 addr
Granule addr gran

Failure GranuleDelegateError (addr ,gran) result

Success NoGranuleDelegateError (addr ,gran) result

Postconditions

Shared X 0 result

Success Granule addr (gran with <|pas := REALM; state := DELEGATED|>)

Footprint

Failure { GPR 0 } Success { GPR 0; GRAN addr; OBJ addr }

Fig. 4. RMI_GRANULE_DELEGATE HOL4 specification.

A technicality of the HOL4 specification is that the actual RMM state space is represented by the
set WELL_TYPED. For example, in a well typed state, every granule in state RTT will have an RTT
object associated with it.3

3.1.2 Command Predicates. The HOL4 specification focuses on RMI commands, covering little
material related to RSI commands, which we do not focus on here. We declare the predicate
RMI_COMMAND using a conjunction of clauses of the form:

RMM_ASSERT (pre_state :State) (post_state :State) (pre_conds :(State set) set)
(post_conds :(State set) set) (footprint :Component set) ⇒ RMI_COMMAND pre_state post_state

The helper predicate RMM_ASSERT makes sure that:
• State pre_state satisfies WELL_TYPED and all of the preconditions in the set pre_conds;
• State post_state satisfies WELL_TYPED and all of the postconditions in post_conds;
• any component not in footprint has the same value in post_state and pre_state; and
• the domain of the granule finite map is the same in post_state and pre_state.

Most RMI commands are declared using two RMM_ASSERT clauses: one for failure, and one for
success, though some commands never fail (e.g., RMI_VERSION), so have just one clause.
The HOL4 specification for the RMI_GRANULE_DELEGATE command is shown in Figure 4. The

first precondition constrains register X0 to hold constant value RMI_GRANULE_DELEGATE, which
is the unique function identifier (FID) for this command (at the time of writing: RMI_GRANULE_-
DELEGATE=0xC4000151). The second precondition constrains variable addr to be the contents of
register X1, which is a command argument. The third precondition conditionally constrains gran to
be the attributes associated with the granule at location addr . An important feature of the HOL4
specification (see Sec. 3.4) is that, in use, such Granule assertions are universally true for all states
pre_state. If the granule at address addr in not delegable (there is no granule meta-data) then the
precondition is true and the value of gran is unconstrained.
The last precondition differs between the failure and success clauses. GranuleDelegateError

holds when a command failure precondition is true, and result is the associated error code.
NoGranuleDelegateError holds when there is no failure condition that is true, and result is
a success code (value 0). The failure and success cases cover all well typed states pre_state in which
a RMI_GRANULE_DELEGATE command is called. The set of all errors is specified as follows:

GranuleDelegateErrors (addr,gran) pre_state def
=

ErrorSet { (“gran_align”,¬AddrIsGranuleAligned addr,RMI_ERROR_INPUT,0w);
(“gran_bound”,¬PaIsDelegable pre_state addr,RMI_ERROR_INPUT,0w);
(“gran_state”,gran.state ≠ UNDELEGATED,RMI_ERROR_INPUT,0w);
(“gran_pas”,gran.pas ≠ NS,RMI_ERROR_INPUT,0w) }

The helper function ErrorSet constructs the set of errors by eliminating all failure conditions that
are false. Only one error code (value of result) is possible in this example: the value of result must
3The RMM state space could have been represented directly using constructors within HOL4, but we wish to closely mirror
the MRS specification here, which just has an enumerated type for granules, e.g., gran.state ≠ RTT not gran.state ≠ RTT(obj).
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Fig. 5. Example of Realm page tables: configured with 50-bit IPA width and a start level of zero.

correspond with error (RMI_ERROR_INPUT, 0w). For some commands and inputs, there may be a
choice of error code, and here the HOL4 model asserts that the error code must be valid with respect
to a declared partial ordering on errors. For brevity, we omit details of these partial orderings.
The first postcondition constrains X0 to have value result, which is the error/success code. The

success case has an extra postcondition: a Granule assertion that specifies the required updates to
the granule attributes. The footprints contain the component GPR 0, which specifies that register X0
is permitted to change value. The success case footprint has two additional components: GRAN addr
for changing the granule attributes; and OBJ addr for changing the object associated with the
granule. The OBJ footprint component is a technicality of the HOL4 specification: a delegate
command does not actually change the memory contents of the delegated granule, however, in the
model, the object associated with the granule must be allowed to change to remain well typed.
The footprints in the HOL4 specification are more coarse grained than those presented in the

MRS specification; they work over whole granules, rather than individual record fields. In the
HOL4 model, unmodified record fields are preserved by updating the pre-state value using the with
construct. This approach helps avoid excessive complexity within the specification and proofs.

3.1.3 Page TableWalks. The RMMmanages stage 2 page tables4 for Realmworld, thus guaranteeing
memory isolation between Realms. The stage 2 tables translate Intermediate Physical Addresses
(IPAs) into Physical Addresses (PAs). The RMM documentation works over an abstraction of Arm’s
Virtual Memory System Architecture (VMSA) [Arm Ltd. 2022a].
An example of this page table abstraction is shown in Figure 5. An abstract type is used to

represent page table entries. There are three main entries: a TABLE entry points to a next level

4Stage 1 page tables translate Virtual Addresses (VAs) into IPAs, and are managed by the Realm OS kernel at EL-1.
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Preconditions

X 0 RMI_RTT_CREATE
X 1 rtt
X 2 rd
X 3 ipa
X 4 level
Granule rtt gran_rtt
Granule rd gran_rd
Realm rd realm_rd
RttWalk rd ipa (level − 1w) walk
NoRttCreateError
(rd,gran_rd,realm_rd,rtt,gran_rtt,w2i level,ipa, walk) result

Postconditions

X 0 result
Granule rtt gran_rtt′

RTT rtt rtt_rtt
RttWalk rd ipa (level − 1w) walk′
K (gran_rtt′ = gran_rtt with state := RTT ∧

walk′.entry = TABLE rtt ∧ rtt_rtt = RttUnfold walk.entry)

Footprint

{ GPR 0; GRAN rtt; OBJ rtt; OBJ walk.rtt_addr;
WALK realm_rd.ipa_width walk walk′ ipa }

Fig. 6. RMI_RTT_CREATE success case.

table; an ASSIGNED entry (on the protected half) points to Realm data, and a VALID_NS entry (on
the unprotected half) can point to any PA. Consider walking the example page tables (Figure 5) to
a requested depth of level 3, using the 50-bit IPA addr with octal value 0001_002_003_000_0000
(split at level boundaries). We start at level 0, which is an extra large (concatenated) base page table
with 4 × 512 = 2048 entries. We lookup the entry at index addr[49:39]=1, which is a TABLE entry
that points to the topmost table at level 1 (a regular 512 entry table). We now perform a (level 1)
lookup at index addr[38:30]=2, which is another table entry, this time pointing to the topmost
table at level 2. The walk proceeds with a (level 2) lookup at index addr[29:21]=3, which then
takes us to a level 3 table. The final (level 3) lookup at index addr[20:12]=0 gives us an ASSIGNED
entry that maps to the first protected data granule in the PA space. By contrast, a (level 3) walk
for IPA 0x0 would terminate early at level 0, since addr[49:39]=0 and this gives an UNASSIGNED
entry, which indicates that this address range is unpopulated.
The IPA space is split into two halves: Protected and Unprotected. Realm confidentiality and

integrity guarantees only apply to the protected half. In our 50-bit IPA example, bit 49 is 0 for
protected addresses, and 1 for unprotected addresses.

At the time of writing, there are twenty-three RMI commands, of which eleven involve page table
walks. Walks are handled using assertions of the form: RttWalk rd ipa level walk. This assertion
conditionally constrains walk, of type RmmRttWalkResult, to be the result of attempting a page
table walk, under Realm rd, for IPA address ipa, to a requesting depth of level. If rd is not a valid
Realm descriptor then the assertion will still be true, but walk will not be constrained.
Figure 6 shows the HOL4 specification for the success case of an RMI_RTT_CREATE command,

which adds a new page table at level. The specification works by asserting that a walk is possible
to level − 1 in state pre_state, and then asserting that the same walk in state post_state gives a new
TABLE entry, which points to the new page table granule at address rtt.5 The footprint now contains
a special WALK component, which makes sure the modified page table at address walk.rtt_addr has
just just one modified entry (no other walks are affected).

3.1.4 Primitive Functions. Most primitive functions within the HOL4 specification are relatively
simple, which means we can readily give them an operational semantics, supporting evaluation
within the logic. A significant feature of the HOL4 specification is that we also provide an operational
semantics for performing page table walks, albeit at the same high level of abstraction presented in
the MRS. There are two main reasons for this: it supports model animation (Sec. 3.2); and it enables
precise/sound reasoning about the behavior of memory management commands (Sec. 3.3.1).

We define some implementation dependent constants using HOL4’s constant specification facility,
which is cleaner than polluting the state space with constants. For example, the HOL4 constant
5In the HOL4 sources bit-vector literals are identified with a w suffix, so value 1 appears as 1w.
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RMM_MAX_S2SZ represents the maximum Realm IPA address width supported by the RMM and is
defined by the following theorem: ⊢ 16w ≤+ RMM_MAX_S2SZ ∧ RMM_MAX_S2SZ ≤+ 52w.

The set of delegable granules is determined by the function PaIsDelegable (used in the failure
precondition in Figure 4), which represents all of the physical memory that the Host presents
to the RMM. This function is not given a precise ASL definition within the MRS. In HOL4, a
granule is considered delegable if its address is in the domain of the granule finite map. Hence,
PaIsDelegable(addr)within the MRS corresponds with PaIsDelegable state addr within HOL4.

3.2 Model Animation
We use custom HOL4 automation as a means to explore the emergent behavior of the RMM
specification. Prior to completing invariant proofs, the automation has helped in understanding the
mechanics of, and rationale behind, the RMM specification. Given a concrete initial state pre_state
and sequence of commands cs, the automation can derive a theorem of the form:

⊢ COMMANDS pre_state cs post_state

where post_state is an RMM state reachable through the sequence of commands cs. A simple
abstract data type is used to represent commands, which include RMI and RSI calls.6
The automation works by iterating over the current state, and the next command, at each

step constructing a suitable (witness) post state and proving that it satisfies the RMM semantics.
This automation has acted as a smoke test for the formalization, helping identify early mistakes,
inconsistencies and regressions. We have used the automation to confirm that important RMM
flows work as expected. The main flow involves: creating a Realm; initializing the Realm IPA space;
creating page tables; creating Realm data; creating Realm Execution Contexts (RECs); activating
the Realm; and finally destroying everything (data, RECs, page tables and the Realm). This flow of
nearly 300 commands takes a fewminutes to complete, as HOL4 checks all inferences with its kernel.
Here, we have prioritized ease of maintenance (see Sec. 3.5) over optimising the performance.

3.3 RMM Invariant
Model animation provides a good means to explore possible behaviors, but it does not provide
deep insights. On the other hand, invariants can precisely characterize properties that hold for all
reachable states, which is useful in establishing that certain bad (insecure) states are not reachable.
Sec. 3.3.1 will briefly outline the definition of an RMM invariant that has been verified in HOL4, and
Sec. 3.3.2 will present a memory isolation result that follows directly from this invariant definition.

The main invariant result is as follows:
⊢ pre_state ∈ INITIAL_STATE ∧ RMI_COMMAND+ pre_state post_state ⇒ post_state ∈ RMI_INVARIANT

Here, RMI_COMMAND+ is the transitive closure of the RMI command relation, and RMI_INVARIANT is
our main RMM invariant.7 This theorem shows that if we start in a valid initial state and the Host
calls any number of RMI commands then the resultant state will always satisfy the invariant.

An initial RMM state is defined to be any well typed state in which all delegable granules are in
state UNDELEGATED (they are not managed by the RMM):

INITIAL_STATE
def
= WELL_TYPED ∩ { state | ∀ addr. state ∈ GranuleState addr UNDELEGATED }

This represents the set of all RMM states following a system boot.

6In reality interactions with the RMM would arise through PEs running sequences of Arm instructions.
7It is also important to establish that this invariant cannot be violated by any other means (e.g., Realm interface commands),
though this is mostly trivially true.
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3.3.1 Invariant Definition. The invariant RMI_INVARIANT is quite complex, and the full invariant
was only discovered in the process of completing the proof. The invariant is split into three main
parts, covering: basic Realm configuration, REC properties, and page table walks.

We provide a concise, mostly complete, informal description of the invariant in the supplementary
material. The most pertinent aspect of the invariant concerns the set of possible stage 2 page table
configurations (as illustrated by the example in Figure 5). The keys points are:

• RTTs are not aliased — they can only be reached by one Realm (the owner) through a single
unique IPA prefix. This means that page tables form a tree structure.

• All ASSIGNED page table entries are at level 2 or 3. They map Protected IPAs to Protected Data
granules that are not aliased by any other ASSIGNED entry. This means that Data granules
have a single owner and can only be reached through a single unique IPA prefix.

• All VALID_NS entries are at level 2 or 3. They map Unprotected IPAs to PAs, and aliasing is
possible (see Sec. 3.3.2).

The main challenge in verifying the invariant is reasoning about page table walks, which are
constrained by the footprint and possibly by RttWalk assertions. For each command and Realm it is
necessary to consider whether or not walks are preserved, or perhaps modified in a constrained way.
For example, RMI_RTT_CREATE modifies one walk, and enables additional walks. By contrast, the
commands RMI_RTT_DESTROY and RMI_RTT_FOLD modify one walk and remove other walks. The
invariant proof has provided a powerful means to detect and avoid issues with these complex parts
of the specification, which involve block mappings that alter possible walk depths.8 In particular,
it is important that all of the invariant properties associated with ASSIGNED entries are correctly
preserved when RMM commands successfully introduce or remove a block mapping.

3.3.2 Realm Memory Isolation. The invariant above can be used to derive an important Realm
memory isolation result. The following set represents the set of all states in which no two distinct
Realms can access the same protected data by walking to an ASSIGNED page table entry:

DISJOINT_DATA
def
= { state | ∀ rd1 realm1 rd2 realm2.

(rd1,realm1) ∈ AllRealms state ∧ (rd2,realm2) ∈ AllRealms state ∧
rd1 ≠ rd2 ⇒ DISJOINT (AllWalkData state rd1) (AllWalkData state rd2) }

where AllWalkData is the set of all Realm owned protected data. It is easy to prove
⊢ RMI_INVARIANT ⊆ DISJOINT_DATA

and this means the DISJOINT_DATA property holds for the RMM specification (all reachable states
satisfy this property). This isolation result follows naturally from the definitions of AllWalkData
and RMI_INVARIANT, since the invariant enforces the property that all ASSIGNED entries point to
protected data granules that can only be accessed by the Realm performing the walk (which is the
owner of the data).

The DISJOINT_DATA result only considers ASSIGNED page table entries in the Protected IPA space.
Note that VALID_NS entries in the Unprotected IPA space can point to data from another Realm.
(This can be achieved using the command RMI_RTT_MAP_UNPROTECTED.) This is why our invariant
does not preclude aliasing for VALID_NS entries. When Realms access unprotected memory, a Non-
secure flag is set (NS=1), which means that a Granule Protection Fault (GPF) exception will occur
when Realms use unprotected IPAs to access granules that are not Non-secure. The HOL4 proof of
DISJOINT_DATA, when combined with the granule protection checks of RME hardware, guarantee
that specification compliant RMMs will always maintain the required Arm CCA world-to-world
memory isolation requirements, i.e., protected Realm data cannot be directly accessed by any other
world or by any other Realm.
8A block mapping is where 512 homogeneous level 3 page table entries are folded into a single level 2 entry.
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3.4 No Undefined Behavior
The invariant of Sec. 3.3.1 provides us with good assurance that certain bad states are not reachable.
However, we also need to guard against inconsistencies (undefined behaviors) accidentally creeping
into the specification. For example, if we accidentally have conflicting assertions, which can never
be true at the same time, e.g., X 1 level ∧ X 1 (level − 1w), in either the preconditions or the
postconditions of a command then state transition is precluded. In the worst case no state transitions
are possible, in which case the state would always remain in INITIAL_STATE, and any invariant
that is true for an initial state could be verified without correctly considering the intended command
semantics. Unfortunately, inconsistencies can be hard to spot by eye, since they may only arise in
subtle corner cases.
Model animation (Sec. 3.2) provides a limited protection against undefined behavior, since we

demonstrate that certain expected states are reachable. However, we really require no undefined
behavior, and so have proved the following theorem:

⊢ pre_state ∈ WELL_TYPED ∧ pre_state ∈ X 0 r0 ∧
r0 ∈ { RMI_FEATURES; RMI_GRANULE_DELEGATE; RMI_GRANULE_UNDELEGATE;

. . . ; RMI_VERSION } ⇒ ∃ post_state. RMI_COMMAND pre_state post_state

This theorem shows that there is no undefined behavior for RMM commands without table walks:
all well typed states have a post state. A similar theorem, with some extra (minor) side-conditions,
has been verified for all the remaining commands (with page table walks). Proving these theorems
identified corner-cases missing from some command failure conditions.
If register zero does not hold a valid RMI FID then it is not possible to make a state transition.

This legitimate undefined case is considered acceptable for the HOL4 specification because it
corresponds with an error case, which has no impact in terms of invariant verification.

3.5 Tracking and Maintenance
A known challenge with theorem proving is the problem of proof maintenance. Minor and seemingly
innocuous changes to specifications can have a disproportionate impact on proofs and proof
automation. Simplistically, this is often reflected in script sizes; in the case of the RMM, seven
times as much code is needed for proofs compared with definitions. To avoid maintenance being
untenable, it helps if definitions remain mostly stable and all changes are carefully assessed to
minimize proof impact. As such, theorem proving at scale tends to happen either with post-hoc
verification (designs are modeled after they are stable/complete) or where verified designs are the
primary output of theorem proving projects.

The RMM specification is amenable to verification, and Arm’s design team have closely consulted
with verification engineers prior to making significant changes. There have been cases where
improvements to the specification have made HOL4 proofs harder. In such cases, proof engineers
have provided assessments of proof effort, with a mind to always accommodating legitimate
improvements that would not render proofs wholly intractable. Our priority is the primary audience
for the specification: software engineers implementing an RMM, a Host hypervisor, or Realm
software. We paid attention to keeping the HOL4 specification close to the source MRS. In particular,
the HOL4 specification refrains from using any shadow state (such as extra fields to track granule
ownership) for the purposes of easing the proof effort. This adds to the proof complexity but does
minimize the risk of the HOL4 formalization unintentionally diverging from the MRS.
An initial HOL4 formalization was produced when the RMM documentation was at an early

stage of development. The RMM ABI and MRS have since evolved at a regular cadence, and we
have successfully maintained the HOL4 model and proofs to track this evolution, prioritizing swift
adjustments in order to provide feedback in a timely manner. Minor changes have been relatively

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 88. Publication date: April 2023.



88:16 A.C.J. Fox, G. Stockwell, S. Xiong, H. Becker, D.P. Mulligan, G. Petri, and N. Chong

easy to accommodate, often taking little more than a day to complete. However, some major changes
have taken weeks to complete (some examples are provided in the supplementary material). To date,
the most significant change has been switching from a fixed 48-bit IPA address space to supporting
any IPA width from 16 bits to 52 bits (with configurable start levels and base RTT concatenation).

Our work shows that, under the right circumstances, it is possible to successfully deploy theorem
proving in an active product development environment, without restricting design choices. We
have taken care to avoid overreach, which has been important in avoiding overly long periods in
which proofs are out of date or broken.

4 RMM IMPLEMENTATION VERIFICATION
In this section we describe how we generate verification harnesses for the implementation of the
RMM from the MRS. Arm is implementing a prototype of the RMM written in C with some inlined
AArch64 assembly. Validating that the implementation satisfies the specification means that each
of the RMM commands implemented must satisfy the pre/postcondition contracts. Formally, we
establish a refinement argument [Abadi and Lamport 1991]. We use the CBMC model checker to
validate the adequacy of the implementation with the specification.

The question we ask here is: how can we ensure that the pre/postconditions that we use to verify
the commands indeed correspond to the intent in the specification? We address this question by
synthesizing verification harnesses for each command directly from the MRS used to define the
specification. Below is a simple example to demonstrate how we go from the MRS, written in YAML
format, to the resulting PDF specification and to the verification harness as a C program exercising
the appropriate command in the implementation.9

Verification Harnesses. Since the specification is written as a sequence of pre/postcondition pairs,
using predicates that constrain the inputs and outputs of the command, we produce code harnesses
that, upon assuming the precondition, assert that the corresponding case of the postcondition is
valid. Those harnesses are generated from the MRS. In the example in Listing 3 we can see that
the predicate AddrIsGranuleAligned at line 8 is directly transcribed from the MRS in Listing 1
into the verification harness. While this predicate is used to describe the abstract state of the
RMM in the specification, in the implementation it has to be realized through the implementation
representation. To that end, for each of the predicates in the specification we need to provide an
equivalent predicate to connect it to the implementation. The function implementing the predicate
AddrIsGranuleAligned is shown in Listing 2, where we use the RMM implementation’s C macro
GRANULE_ALIGNED in Listing 4 to define the predicate.
In this case the implementation is relatively trivial, while other predicates require substantial

understanding of the way that implementation state models the specification state, and their
connection needs to be carefully aligned. An example of complicated predicates are preconditions
or postconditions establishing the result of page table walks starting from a Realm’s base table.

As can be seen from the generated verification harness, all the inputs to the command, stored in
the __tb_regs data structure at line 1, are initialized to non-deterministic 64-bit unsigned integer
values. In code omitted for readability, we also name the value of these registers with the names in
the comments next to them (see the supplementary material for the full example). This is a sound
approach, because all commands are totally specified. That is, the specification accepts no undefined
behavior, and commands define a result for all input combinations, as mentioned in Sec. 3.4.
However, the correct execution of commands in the implementation not only depends on the

input, but also on the initial state of the RMM. The states reachable for the RMM satisfy the
invariant that we discussed in Sec. 3.3.1. In other words, if we start in an initial state satisfying
9The snippets contain only relevant portions to explain the example.
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!commands.Command
name: RMI_DATA_CREATE
description: Creates a Data Granule , copying and

measuring contents from a Non -secure ...
...
failure:
- !commands.CommandFailureCondition

id: src_align
pre: '!AddrIsGranuleAligned(src)'
post: ResultEqual(result , RMI_ERROR_INPUT)

Listing 1. MRS of the src granule alignment case.

scr_align pre: !AddrIsGranuleAligned(src)
post: ResultEqual(result, RMI_ERROR_INPUT)

Fig. 7. PDF corresponding to Listing 1.

bool AddrIsGranuleAligned(ulong addr) {
return GRANULE_ALIGNED(addr);

}

Listing 2. Linking the abstract and concrete state.

1 struct tb_regs __tb_regs = __tb_arb_regs ();
2 __tb_regs.X0 = SMC_RMM_DATA_CREATE;
3 __tb_regs.X1 = nondet_uint64_t (); // data
4 __tb_regs.X2 = nondet_uint64_t (); // rd
5 __tb_regs.X3 = nondet_uint64_t (); // map_addr
6 __tb_regs.X4 = nondet_uint64_t (); // src
7 __init_global_state(__tb_regs.X0); // Generate non -deterministic state
8 bool failure_src_align_pre = !AddrIsGranuleAligned(src); // Evaluate precondition
9 uint64_t result = tb_handle_smc (& __tb_regs); // Execute command
10 bool failure_src_align_post = ResultEqual(result , RMI_ERROR_INPUT); // Evaluate

postcondition
11
12 // Failure condition assertions (excerpt)
13 bool prop_failure_src_align_ante = failure_src_align_pre;
14 __COVER(prop_failure_src_align_ante);
15 if (prop_failure_src_align_ante) {
16 bool prop_failure_src_align_cons = failure_src_align_post;
17 __COVER(prop_failure_src_align_cons);
18 __ASSERT(prop_failure_src_align_cons , "prop_failure_src_align_cons"); }

Listing 3. CBMC verification harness corresponding to the specification in Listing 1.

#define ALIGNED(_size , _alignment) ((( unsigned long)(_size) % (_alignment)) == 0)
#define GRANULE_ALIGNED(_addr) ALIGNED(_addr , GRANULE_SIZE)

Listing 4. GRANULE_ALIGNED Macro.

the invariant explained in Sec. 3.3, and only execute RMM commands (successful or not), we will
only arrive at states that also satisfy that invariant. Therefore, in the verification harnesses for our
commands, we assume a non-deterministic state that satisfies (or more generally approximates)
the invariant of Sec. 3.3.1. This is shown in Listing 3 as __init_global_state(__tb_regs.X0)
at line 7 in Listing 3. In our experiments, generating precise non-deterministic states that satisfy
the invariant limits the scalability of model checking. This is because precisely initializing the
initial state according to the invariant, requires non-deterministically populating and linking many
data structures which may not be used by the command under check. Since this initialization
is performed using C code, this increases the model checking complexity, even if unused by the
command. Hence, instead of initializing the whole state, we initialize a carve-out of the state which
is sufficient to prove each of the commands while leaving the rest under-constrained. This is why
the state initialization function takes the value of register X0 as input the command identifier.
Knowing what portion of the state needs to be populated according to the invariants is not trivial
and we have not found means to automate it. Fortunately, in general, commands footprints are a
good indications of what portion of the state needs to be constrained, and it only needs changing
on specification changes, which are more infrequent than implementation changes.
In Listing 3 we only show the verification of the pre/postcondition pair corresponding to the

failure of alignment of the source granule src. Ignoring the __COVER calls for now, we can see that
the verification harness simply evaluates the precondition in the condition of an if-statement at
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line 15, and verifies that the result of the command in that case matches the expected result in the
specification at line 18.10 While this is quite a simple command, other commands follow a similar
pattern, albeit adding many more clauses in the precondition, and validating additional properties
of the state in the case success case of the command.

Validating the Verification Harnesses. As mentioned, to improve the time taken by the model
checker to verify a command, we provide specific non-deterministic initial states for each command.
However, can we be assured that we have not over or under-constrained the initial state to a
command? Answering that question is the purpose of the __COVER clauses (e.g., lines 14 and 17
in Listing 3) in the verification harness. These are defined as the __CPROVER_cover command of the
CBMCmodel checker, which validates whether the program point, as well as the predicate provided
as input, can be reached in some program execution by CBMC. Hence, if we over-constrain the
initial state to a command, making any of its pre/postcondition pairs unreachable, we get a __COVER
violation, meaning that either the initial state is over-constrained, or the pre/postcondition pair is
vacuous. The former case is a bug in the verification harness, the latter is indicative of a problem in
the specification or implementation.11

From Counter-examples to Debugging. When an error in the postcondition checks is found, CBMC
provides a counter-example instantiating all the non-deterministic values. Moreover, we get a
full trace leading to the error. Given the verbosity of the output obtained from CBMC, we have
found that summarizing these calls into embedded call/return pair sub-traces is usually sufficient
for engineers to accurately identify and fix the bug. To that end, we have implemented a simple
Python script that sanitizes the output of CBMC on postcondition failure, and we use that as a
first approximation to repair the error. Alternatively, we have used the cbmc-viewer tool provided
by AWS [Amazon Inc. 2022], but we have found the simplified call/return terminal output more
effective in quickly identifying the source of the problem.

An important remark here is that this is an important qualitative advantage in debugging when
compared to the traditional unit testing approach common in testing and debugging workflows.

Inline AArch64 assembly. An important aspect of using CBMC is that the RMM implementation
contains a small number of low-level code in AArch64 assembly. Unfortunately, CBMC cannot
deal with these code. To solve this problem we provide alternative shadow implementations in
equivalent C code. Importantly, most of these AArch64 snippets use specific Armv8-A instructions
related to memory coherence and ordering constraints. Examples of these are the stlr instruction,
which is a store release [Arm Ltd. 2022a]. Since we do not perform concurrent verification using
CBMC, this is equivalent to a normal store str instruction, or a simple assignment in C:

void write_release(uint64_t *p, uint64_t v) {
asm volatile(
"␣␣␣␣␣ stlr␣%[v],␣%[p]\n"
: [p] "=Q" (*p)
: [v] "r" (v)
);

} // The original assembly version

void write_release(uint64_t *p, uint64_t v) {

*p = v;

} // The C-equivalent version

As in this typical case, although most manual transformations must be trusted, they are trivial
liftings of concurrency-aware AArch64 instructions into C.12 As such, the presence of a small
amount of standard assembly code, purely implementing hardware interface primitives, is of limited
10There are many alternative ways of encoding this, but for large commands we found this template to be quite effective.
11In general, this could also be the result of an implementation refining the specification to make some cases impossible.
12Though soundness might become a problem here, we have high confidence on the transformations, since they are done
by the knowledgeable engineers in the production team.
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concern regarding our primary verification goal for the implementation, which is to catch as many
coding bugs as possible.

Bounds and scalability. Fortunately, due to the nature of the firmware, most loops contained in
programs are of fixed, and generally small, size. The maximum level of any page table is bounded
by 3 (potentially starting from level -1), as shown in Figure 5. This helps alleviate issues with under-
approximation of bounds in CBMC. An important exception to this rule is the implementation of
spin-locks, which will be discussed in more detail in Sec. 5. However, since in the verification of
specification refinement we are not interested in concurrent executions, we assume that initially
all locks are free, and therefore spin-locks reduce to a single iteration.

To tackle the scalability of CBMC we need to consider the size of the state space. While the actual
implementations must keep track of all delegable granules, each command only ever uses a handful
of them. Since our verification harnesses only checks one command at a time, it is safe to only
enforce the well-formedness invariants on this small subset, since any other granule would fail on
one or more of the precondition checks of the command. Based on this observation, we conclude
that, due to the non-deterministic nature of the inputs to the commands, it is enough to restrict the
total size of granules to a number larger than the maximum number used by any of the commands
(which will only use them in the successful case, or in checking the most complex failure case).
Hence, we provide the verification script, an additional argument to limit the number of granules
to be considered for meta-data. With a small number of granules, all of our verification harnesses
explore all the failure and success cases, and the complete verification of pre/postconditions for all
commands finish in hours.

Similarly as above, Arm’s RMM prototype implementation requires that certain data structures
have allocated state for each PE. Hence, more PEs increase the state space. Since we only consider
one command at a time, we assume that there is only one PE, further reducing the state space.

Results. Our verification harnesses were used for the initial RMM prototype, and are currently
being used by the product team developing the Arm’s reference RMM implementation. In fact,
We prototyped the CBMC verification flow, mostly through auto-generation, with the goal that
the production team can maintain and modify without help from verification engineers. Upon the
release of the reference implementation, our tool will be made available. At the time of writing we
have found over 30 bugs documented in the tracking systems of the prototype implementation—
development teams use a different tracking system ranging from memory safety issues to violation
of pre/postconditions. Some of these bugs were uncovered by our CBMC runs, and others were
found while matching the abstract and implementation representations with each other by reading
the specification. Also, some bug reports encompass a suite of related errors, so this number is an
approximation of the number of defects that our verification captures.

5 RMM CONCURRENCY: DEADLOCK FREEDOM
We use a combination of formal modeling and interactive theorem proving in HOL4, alongside
model checking with CBMC, to ensure the absence of deadlocks in the RMM implementation.

The RMM implementation uses fine-grained locking to mediate concurrent accesses to granules
containing metadata about Realms, and stored in Realm PAS, in a performant way. This meta-
data stores information about the state of information stored in granules. Moreover, concurrent
interactions of the RMM must operate on the same data structures storing this metadata and
on granules dedicated to the maintenance and management of Realms. Consequently, the RMM
implementation needs to serialize access to these shared data structures. Correct synchronization
of RMM commands is not only critical for the safety of the commands, but is also critical to the
overall security properties offered by the RMM. This is because the invariants discussed in Sec. 3.3.1
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are only valid if we can guarantee that, when operating on a Realm’s metadata, that metadata
cannot be altered by another RMM command executing concurrently on a different core. Note that
this is a legitimate threat, since a malicious untrusted OS, executing on the Non-secure Host, is a
threat actor within the Arm CCA threat model. As an example, consider the following two calls
issued by the Non-secure Host in two different cores:

smc_rmi_realm_create(rd, ...) ∥ smc_rmi_granule_undelegate(rd)

Here, the Host tries to create a Realm using the previously delegated granule with physical address
rd as its realm descriptor metadata, and concurrently, the Host also attempts to move rd from the
REALM PAS to the NS PAS. Without locking, commands are susceptible to a time of check to time of
use (TOCTOU) vulnerability: the left command validates the preconditions on rd—ensuring that it
is indeed a delegated physical address—and the right command modifies the PAS to NS—making
the metadata contained in rd accessible to the Host—before the left can appropriately update the
granule state.13

Locking mechanism. The RMM firmware executes at EL2, so the choice of synchronization
mechanism must be simple, with the RMM implementation adopting spin-locks as the lock of
choice. For a given granule metadata g, the RMM locks the granule if it finds it free, or it spins (using
the wait for event instruction, wfe, in a loop to release the PE resource) until the lock is free. Upon
obtaining the lock, it checks the metadata of the granule has the state expected by the command,
in which case the lock operation exits successfully, or it releases the lock and exits reporting a
precondition violation if the granule state is not the expected one. This pattern is captured by the
code snippet for the granule_try_lock function (ignore lines 2, 5 and 8) in Listing 5.14

Observe that conservatively acquiring the lock and releasing it immediately if the granule state
is not the one expected cannot lead to a new deadlock. That is: if there is a deadlock hazard, this is
independent of the granule state of the granule.

Deadlock hazards. While this simple lock enforces mutual exclusion, there is a potential deadlock
hazard. Consider the concurrent execution of two commands:

smc_rmi_rec_create(addr1, addr2, ...) ∥ smc_rmi_rec_create(addr2, addr1, ...)

Ignoring the semantics of these commands, observe that their only difference is the order in which
the granules at addresses addr1 and addr2 are passed as arguments. Whilst calling these two
commands concurrently is bound to fail (since the preconditions that apply to the former granule
are inconsistent with the ones that apply to the latter), the granules must be locked by the RMM to
check their statuses. Importantly, as granules are provided as inputs by an untrusted Host, this is a
route through which a Host may induce a deadlock in the RMM, for example, if the implementation
naively locks the granules following the order of parameters. Whilst Arm CCA offers no availability
guarantee to Realms, we wish to avoid obvious sources of deadlock in the RMM, if only to defend
against buggy Hosts inadvertently inducing them.
One widely-known mechanism to prevent deadlocks is to acquire locks in a globally defined

total order, with an ordering on the physical addresses of granules being an obvious candidate.
Unfortunately, this is too simplistic, in our case: some granules, i.e., RTT and Data granules, that
must be locked by RMM commands are only discovered by dereferencing the content of other
granules. Updates to a Realm stage 2 page table by the RMM are the most common example of

13This is merely illustrative: in the implementation, granules in REALM PAS are scrubbed before transitioning to NS PAS.
14The implementations of spinlock_acquire and granule_spinlock_release is written in AArch64 assembly.
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1 bool granule_try_lock(struct granule *g, enum
granule_state expected) {

2 cbmc_check_locking_discipline(g, expected);
3 // Checks discipline via ghost state
4 spinlock_acquire (&g->lock);
5 cbmc_lock_granule(g, expected); // Update ghost

state
6 if(granule_get_state(g) != expected) {
7 spin_lock_release (&g->lock);
8 cbmc_unlock_granule(g); // Update ghost state
9 return false;
10 }
11 return true;
12 }

Listing 5. Code snippet for granule_try_lock.

typedef struct locked_granule {
struct granule *gr;
enum granule_state locked_state;
bool is_locked;

} g_meta;

struct locking_footprint {
g_meta *locked[MAX_LOCKS ];
uint8_t current_lock;
struct granule *rd;
uint32_t next_rtt_index;
uint8_t count_data_locks;
uint8_t count_rtt_locks;

} lock_fpt;

Listing 6. Global locking footprint.

20 // Assume the granule g_tbl is locked.
21 struct granule *find_lock_next_level(struct granule *g_tbl , unsigned long ipa , long level)
22 {
23 const unsigned long idx = s2_addr_to_idx(ipa , level); // Index to the `level ` RTT
24 locking_fpt.next_rtt_index = idx; // CBMC: update ghost state
25 struct granule *g = __find_next_level_idx(g_tbl , idx); // Granule address at `idx`
26 if (g) granule_try_lock(g, GRANULE_STATE_RTT);
27 return g;
28 }

Listing 7. Code snippet for find_lock_next_level.

30 void cbmc_check_locking_discipline(struct granule *g, enum granule_state expected_state) {
31 if (expected_state == GRANULE_STATE_RTT) {
32 CBMC_ASSERT(lock_fpt.count_data_locks == 0, "rtt␣after␣data");
33 if (lock_fpt.count_rtt_locks == 0) { // We are locking the root rtt
34 CBMC_ASSERT(__is_parent(lock_fpt.rd, g), "rtt␣root");
35 } else { // We already hold an rtt lock , so last rtt locked must be the parent
36 struct granule *parent = lock_fpt.locked[lock_fpt.current_lock]->gr;
37 unsigned long recorded_index = lock_fpt.next_rtt_index;
38 CBMC_ASSERT(__find_next_level_idx(parent , recorded_index) == g, "rtt␣tree␣structure"

);
39 }
40 } else if (expected_state == GRANULE_STATE_DATA) {
41 CBMC_ASSERT(lock_fpt.count_data_locks == 0, "data␣after␣data");
42 if (lock_fpt.count_rtt_locks > 0) { // We hold an rtt lock , so the last must be the

parent
43 struct granule *parent = lock_fpt.locked[lock_fpt.current_lock]->gr;
44 unsigned long recorded_index = lock_fpt.next_rtt_index;
45 CBMC_ASSERT(__find_next_level_idx(parent , recorded_index) == g, "rtt␣tree␣structure"

);
46 }
47 } else {
48 CBMC_ASSERT(lock_fpt.count_rtt_locks + lock_fpt.count_data_locks == 0, "phase␣change")

;
49 for (int i = 0; i < lock_fpt.current_lock; i++)
50 CBMC_ASSERT( !lock_fpt.locked[i] // i granules have been locked
51 || !lock_fpt.locked[i]->is_locked // granule i remains locked
52 || granule_addr(lock_fpt.locked[i]->gr) < granule_addr(g), // the address of

granule @i is lower than the address of g
53 "ordering");
54 } }

Listing 8. Code snippet for check_locking_discipline.

this. As a result, we instead introduce a locking discipline in two phases (not to be confused with
two-phased locking) for commands, which:
(1) locks all granules passed as arguments to the command in physical address (PA) order, i.e.,

PA-order in Figure 8, and
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Fig. 8. Lock ordering. PA stands for physical address and Def for dereference.

(2) locks all granules that are referenced from previously locked granules, in the order that they
are dereferenced i.e., Def-order in Figure 8.

Sec. 3 establishes an important shape invariant of the RMM state: Realm page tables always form a
strict tree stemming from the root entry of the Realm descriptor granule metadata. As commands
that dereference to-be-locked granules start traversal from a locked Realm descriptor, and its
corresponding locked page table root granule, we can ensure that pointer chasing through the tree
cannot lead to a deadlock (otherwise we have a shape invariant violation). Consequently, the RMM
implements page table walks via a fine-grained hand-over-hand locking method (see [Vafeiadis
and Parkinson 2007] for a description and an early proof of correctness of this mechanism). The
code snippet to traverse a page table is in Listing 7. Ignoring the code only visible to CBMC
(line 24), given a parent RTT table g_tbl and a source address to be mapped ipa, the function
find_lock_next_level computes the index, and locks and returns the next level RTT table.
Importantly, there is a strong correspondence between a granule’s state and whether it should

be locked by its address (that is, its address must be known before locking any other granule), or
should be locked by pointer chasing from another granule. Granules with a state indicating that
they are to be locked by address must be passed as arguments to the command, and no granule that
should be locked by dereferencing pointers (that is, granules expected to be in the states RTT or
Data) should be passed as arguments to the command. This property is easy to prove using CBMC.

A Model of the Locking Discipline. To ensure that the discipline above implies deadlock freedom,
we formalized an idealized notion of RMM commands in HOL4, generalizing all commands imple-
mented in Arm’s RMM. We consider an unbounded number of granules with their corresponding
RMM states as described in Sec. 3, and an unbounded number of concurrent RMM commands lock-
ing and unlocking granules according to the discipline, enforced by construction in the predicate
RmmStep in the statement below. We also assume all granule states as well formed, that is: all RTT
granules conform to a strict tree (or rather, a forest). Using this model we prove the following
theorem, which expresses the property that no deadlock state is reachable, as long as all commands
eventually release all acquired locks:

⊢ ∀ init state. InitRmmState init ∧ RmmNStep init state ⇒ ¬Deadlock state

A deadlocked state is one in which one or more commands are blocked due to a cycle over a
waiting-on-lock relation.

The proof proceeds via a simple induction on the number of transitions taken by well-disciplined
commands in our idealized model. The key invariant of the proof is that commands only ever
attempt to lock granules per the order described above.15

15Proofs will be provided as additional material for reviewing purposes.
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Checking the Locking Discipline. We established that discipline-respecting commands do not run
into deadlocks, using HOL4 above. Yet, we must prove that all RMM commands in the implemen-
tation follow the locking discipline. Fortunately, since this discipline is on a per-command basis,
we do not need to consider concurrent executions when checking that a command satisfies it. To
verify this discipline, we use ghost state and the shadowing mechanism16 of CBMC to check that
whenever a lock is acquired or released by a command, the discipline is respected. The ghost state
captures the locking history of a command through its locking footprint, lock_fpt in Listing 6,
comprising: (1) the locking trace locked and the most recently locked granule in the trace indexed
by current_lock, (2) bookkeeping information, rd and next_rtt_index, for verifying Def-order,
and (3) counters to the discovered data and RTT granules, count_*, for checking phases: that
is whether we are currently locking by address order, or by dereference. Given the ghost state,
one property we verify is the lock ordering via function check_locking_discipline in Listing 8.
When locking a RTT or Data granule, either the previously locked RD lock_fpt.rd is the parent
to the about-to-lock root RTT (line 34) or the most recently locked RTT granule is the parent to
the next level RTT or Data (lines 38 and 45, respectively). For other granule states, locking must
follow the PA-order (line 52). The two counters further check the locking phase: non-discovered
granules (line 48) are followed by RTT granules (line 32) and then Data granules. To enable the lock
ordering check above, we have to shadow granule_try_lock and find_lock_next_level. In
particularly, the lock ordering check happens at line 2 before the original RMM lock implementation
and necessary ghost state updates are introduced at lines 5, 8 and 24. Using the same methodology,
we further prove: (1) no unlock operation is performed on a lock that was not acquired before,
(2) that in every path, all locks are eventually released, and (3) that no lock is released more than
once. These implementation-specific properties proven by CBMC, together with the guarantees
established in our HOL4 model17, imply that the implementation cannot be induced to deadlock
through any possible combination of calls to RMM commands by the Host.

6 TRUSTED FIRMWARE EXPLORER (TFX)
Our HOL4 and CBMC verification flows do not consider concurrency beyond deadlock freedom (e.g.,
interrupt or exception injection), nor architectural state. We address these aspects through system
level tests with high coverage and expressivity. Implementing the necessary level of instrumentation
at the system level, without sacrificing the fidelity of the test infrastructure, is the primary difficulty
here. For example, testing a concurrent interleaving of commands running on multiple PEs could
be achieved via manual code instrumentation, but aside from being laborious and not scaling, this
would lead to a divergence between the production system and the system under test.

To address this, we developed Trusted Firmware Explorer (TFX), a system-level testing, debugging
and introspection infrastructure with emphasis on concurrency control. At the lowest level, TFX
connects to the system under test via Arm’s Iris Debug Interface [Arm Ltd. 2022b] and exposes
a Python scripting interface to the user, providing a “bird’s eye view” of the system under test
with the ability to control PE’s and inspect their full architectural state. This infrastructure is not
specific to Arm CCA, but atop it. TFX provides three Arm CCA-specific support libraries: support
for dynamic injection of RMI commands, and common flows such as creating Realms from ELF
binaries; support for C-like state inspection of the RMM; and a library for concurrency control.

State inspection. TFX’s Python interface also provides C-like access to RMM state, and access to
error codes and other architectural constants; the former parses the Arm CCA MRS, and the latter

16The shadowing mechanism enables us to provide different versions of lock-related functions that manipulate ghost state.
17The implementation properties verified by CBMC are in fact stronger than the theorem in HOL4 model.
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tfx.run(tfx.rmi(cpuid =0). RMI_Granule_Delegate(addr=foo))
assert tfx.cpus [0]. read_register("X0") == tfx.spec.RmiStatusCode.RMI_SUCCESS

Listing 9. Injecting an RMI call into the NS host using TFX and checking return code.

realm = Realm(tfx , elf_img='payload
.elf')

rec = REC(realm , mpidr =0)
realm.create(cpuid =0)
rec.create(cpuid =1)

Listing 10. High-level flows for creation
of Realms and RECs in TFX.

realm = Realm(tfx ,elf_img='payload.elf'); realm.create
(cpuid =0)

# Create two RECs concurrently on two CPUs
rec = [REC(realm , mpidr=i) for i in range (2)]
tfx.zip([rec[i]. f_create(cpuid=i) for i in range (2))

Listing 11. Randomly interleaving the creation of two RECs for
the same Realm using TFX.

# Construct Realm creation command ...
call = tfx.rmi(cpuid =0).RMI_Realm_Create(rd=g_rd , params_ptr=g_params , may_fail=True)
# ... run until parameter granule is about to be copied from
tfx.until(call , tfx.rmm.is_at("memcpy_ns_read", cpuid =0))
tfx.model.step(count =17) # Run a few steps to get into copying
# Now issue a delegate on CPU1 , moving parameter granule to Realm PAS
tfx.run(tfx.rmi(cpuid =1).RMI_Granule_Delegate(addr=g_params))
# NS copy should fault now; check via breakpoint in fault handler
tfx.until(call , tfx.rmm.is_at("handle_rmm_trap", cpuid =0))
tfx.run(call) # Finish call
assert call.result.result_code == tfx.spec.RmiStatusCode.RMI_ERROR_INPUT

Listing 12. A failing TFX test: an NS parameter granule in RMI_Realm_Create is moved to Realm PAS whilst being
read by the RMM.

parses the RMM binary. Together, with access to system registers provided by Iris, TFX allows the
user to specify and dynamically check invariants of the architectural and RMM-internal state.

Concurrency Control. TFX provides fine-grained concurrency control by decoupling the defini-
tions of flows, preemption points, and scheduling decisions, analogous to how multiple logically
independent applications are multiplexed in an operating system, based on preemption points given
by timers and traps and a scheduling strategy. In TFX, a flow is modeled as a Python generator:
a resumable function that can yield early and continue execution later. Whenever a flow yields,
control returns to the parent flow whose scheduler decides which flow to continue next.
In the simplest case, consider two RMI call flows F and G running on separate PEs, and a parent

flow orchestrating them: if F and G do not yield prior to completion, no interesting interleaving is
possible, akin to applications finishing work prior to a timer preemptively interrupting them in
an operating system. However, when introducing a preemption condition (such as a timeout or
breakpoint) to F and G, they will yield potentially many times prior to completion, allowing the
parent flow’s scheduler to construct nontrivial interleavings. This flexibility allows for both the
exploration of specific (e.g., Listing 12) as well as random (e.g., Listing 11) interleavings, similar to
property-based testing tools, like Quickcheck [Claessen and Hughes 2000].

Applications of TFX. Aside from being a valuable exploration vehicle for RMM development, TFX
supplements our verification methodologies, empirically validating the correctness of the RMM
implementation in situations not easily amenable for verification: interrupt and exception injection
(e.g., Listing 12), concurrent execution of attestation flows, and similar. These tests are expanding,
and will grow to also include the checking of non-trivial invariants spanning the software-hardware
boundary, and also potentially finding application in the testing of other firmware components.
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7 RELATEDWORK
We focus on works related to OS verification and formal methods for Confidential Computing.

OS verification. Previous work has presented verified operating system kernels [Bevier 1989;
Chen et al. 2018; Gu et al. 2011, 2019, 2016; Klein et al. 2010, 2009; Sewell et al. 2011], separation
kernels [Dam et al. 2013b], and hypervisors [Dam et al. 2013a; Li et al. 2021a,b; McCoyd et al.
2013; Nemati et al. 2015; Tao et al. 2021], all largely using interactive theorem proving, given the
complexity and scale of the task, though we note some use of deductive tools [Blanchard et al. 2015,
2018; Chong and Jacobs 2021; Haque et al. 2020; Leinenbach and Santen 2009; Mangano et al. 2016].
We use model checking for verifying the functional properties of an implementation, reserving
HOL4 for reasoning about security and consistency properties of the specification.
In an industrial context, where the codebase being verified is being co-developed concurrently

with the verification flow, this approach has advantages. Model checking allows us to reason
directly on the source code of the implementation, rather than a model or embedding within a
theorem prover, as CBMC’s front end is especially liberal, accepting a large fragment of C including
constructs which often pose problems for verification tools. This has the advantage of eliminating
any translation from our TCB, which consists of only CBMC and support code, though we must
trust CBMC’s understanding of C semantics. Moreover, model checking with CBMC seems simply
easier to understand than theorem proving for product engineers—especially in the semiconductor
industry, where model checking is commonly used—and our support code can be audited by product
engineers reusing their existing C expertise. Model checking is also flexible enough to maintain
a working verification flow on a rapidly-changing codebase, easing integration into CI flows. In
contrast, the slower-moving specification of the behavior of the RMM can be effectively modeled
within an interactive theorem prover. Finally, as explained above, CBMC verification harnesses for
Arm’s prototype RMM implementation are automatically generated from the MRS, which is also
used to generate the specification. Generated verification conditions can be kept separate from the
RMM codebase, leading to cleaner code, and a clearer separation of concerns between verification
and implementation of the RMM. Doing this with a proof assistant would be much more difficult.

Formal methods and Confidential Computing. Intel established linearizability for SGX instructions
using model checking and Accordion, a custom DSL [Leslie-Hurd et al. 2015]. Attestation protocols
have also been verified [Sardar et al. 2020a, 2021, 2020b]. We ignore attestation in this work.
Komodo [Ferraiuolo et al. 2017] implements a protected execution environment using Arm

TrustZone, and implemented in Armv7 machine code. The functional correctness of the security
monitor, and the confidentiality and integrity (up-to explicit declassification and endorsement
events) are verified in the Dafny deductive verification tool [Leino 2010], using an embedding of the
semantics of Arm machine code, representing the closest previous work to our own. However, the
RMM is more complex than the Komodo security monitor, as it must expose sufficient functionality
to untrusted hypervisors to blindly manager a full virtual machine, supporting a wide range of
operating systems, both commercial and open-source. Komodo, on the other hand, implements
Intel SGX-style protected libraries, which requires a simpler implementation, but are more limited.
Serval [Nelson et al. 2019] was applied to the implementations of the security monitors for

Komodo and RISC-V Keystone, finding, in the latter, a range of implementation and specification
bugs, with fixes adopted by the Keystone project. This verification effort targeted a point-release of
Keystone, with no continuous re-verification of the implementation as the codebase changes, and
before verifying code, a specification for the Keystone security monitor had to be written.

An important related work [Li et al. 2022] verifies an early snapshot of the RMM prototype using
the CertikOS [Gu et al. 2018] toolchain for Coq. There are several important differences compared
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to our work. (1) Li et al. [2022] did not formalize the pre/postconditions of the RMM ABI [Arm Ltd.
2022c]. Instead, functional correctness was established with respect to an idealized RMM that Li
et al. [2022] created directly from the C code itself. A major advantage of our work is that we have
verified the RMM implementation against the official specification [Arm Ltd. 2022c]. Furthermore,
our HOL4 results provide security guarantees that extend to all RMM implementations. (2) Li et al.
[2022] was a one off evaluation of formal methods for Arm CCA, and changes to the RMM were
not tracked during their verification effort. As such, the verified code quickly became outdated: it
implements an early version of the ABI, which has subsequently undergone numerous changes.
(The ABI now provides a different set of commands and more features.) By contrast, our work has
tracked changes and our results will apply to the production RMM. (3) Our work takes a more
practical and holistic approach, and has yielded better results than Li et al. [2022] in terms of
identifying issues and supporting the active development of the RMM codebase. We support rapid
verification of the evolving C code, as well as debugging at the hardware/software interface. In
summary, Li et al. [2022] presents initial results about a certified RMM point-release, but says
nothing about the final RMM product, with goals largely orthogonal to ours.

8 CONCLUSION AND FUTUREWORK
Arm CCA is a recently-announced extension for the Armv9-A architecture. Given the exacting
threat model of Arm CCA, applying varied verification techniques allows us to boost confidence in
the specification and implementation. Since both are under active development, we have shown how
interactive theorem proving helps validate fundamental properties of the specification, including
coherence of the commands, well-formedness invariants, and isolation between Realms. Moreover,
we have shown how these properties can be used alongside the specification to generate verification
harnesses for the CBMC model checker and thus guarantee that the reference implementation
satisfies the specification, establishing a refinement argument.
In addition to HOL4 and CBMC, we also built tools to test the interface between the RMM and

RME hardware implementation. TFX (see Sec. 6) allowed us to repeatably test and validate execution
flows, with specific or exhaustive coarse-grained interleavings of Host and RMM commands, for
property checking, and was useful for validating typical command flows for Arm CCA.

Our work verifying the Arm CCA specification and a prototype RMM is the most extensive use
of formal methods for a Confidential Computing implementation with commercial viability. Yet,
there are aspects of Arm CCA that we did not consider, and leave open for future work:

Data-race freedom, and atomicity. Wemostly considered the sequential verification for commands,
with the exception of the deadlock-freedom analysis described in Sec. 5. We aim to prove the absence
of data races and the atomicity of RMM commands, cognizant of the AArch64 usage of atomic
Armv8-A assembly, using a reduction to sequential CBMC verification. Whilst we were careful
to ensure that the verification of RMM command pre/postconditions in CBMC was correct, in a
concurrent setting, we would like to apply reduction techniques like CIVL [Kragl and Qadeer 2021]
to make commands as atomic as possible, and use rely-guarantee style reasoning [Jones 1983] to
ensure the stability of pre/postconditions in the case where commands are not fully atomic.

Composing hardware and software verification. The hardware specification and subsequent imple-
mentations by Arm partners is critical to the security of Arm CCA. Arm, however, has substantial
existing expertise in validating and verifying hardware specifications and implementations, using a
mixture of industrial model checkers, and internal specification and verification tools [Reid 2016;
Reid et al. 2016]. However, composing the verification of hardware, and software that executes atop
it and which relies crucially on security properties that it provides, remains a challenge. We aim to
further investigate the composition of our software and hardware verification efforts.
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Attestation. Arm CCA specifies an attestation token format, but does not constrain the asso-
ciated attestation protocol used to authenticate that token by skeptical challengers. Arm’s own
implementations of Arm CCA will, however, need to specify a particular protocol. We aim to use
protocol model checking tools, such as Blanchet [2013] and Meier et al. [2013], to verify this.

Noninterference. The memory isolation result presented in Sec. 3.3.2 falls short of a full proof
of confidentiality and integrity-preservation for Arm CCA, both of which are typically formally
phrased as hyperproperties like noninterference [Goguen and Meseguer 1982], or one of its many
refinements. Useful programs require external communication to retrieve inputs and communicate
outputs, and any communication channel precludes an absolute statement of confidentiality or
integrity, as Realms may declassify or endorse arbitrary data, and with this, confidentiality and
integrity must be relativized against assumptions about the software executing inside a Realm.
Additionally, there is implicit information flow as a Realm executes, for example, through page
faults which is outside of the Realm’s control. We leave formally establishing stronger security
properties for Arm CCA, beyond our memory isolation result, as future work.
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