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Abstract
We present a technique for verifying race- and divergence-
freedom of GPU kernels that are written in mainstream ker-
nel programming languages such as OpenCL and CUDA.
Our approach is founded on a novel formal operational se-
mantics for GPU programming termed synchronous, delayed
visibility (SDV) semantics. The SDV semantics provides a
precise definition of barrier divergence in GPU kernels and
allows kernel verification to be reduced to analysis of a
sequential program, thereby completely avoiding the need
to reason about thread interleavings, and allowing existing
modular techniques for program verification to be leveraged.
We describe an efficient encoding for data race detection and
propose a method for automatically inferring loop invari-
ants required for verification. We have implemented these
techniques as a practical verification tool, GPUVerify, which
can be applied directly to OpenCL and CUDA source code.
We evaluate GPUVerify with respect to a set of 163 kernels
drawn from public and commercial sources. Our evaluation
demonstrates that GPUVerify is capable of efficient, auto-
matic verification of a large number of real-world kernels.

Categories and Subject Descriptors F3.1 [Logics and
Meanings of Programs]: Specifying, Verifying & Reason-
ing about Programs

Keywords Verification, GPUs, concurrency, data races,
barrier synchronization

1. Introduction
In recent years, massively parallel accelerator processors,
primarily graphics processing units (GPUs) from companies
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such as AMD and NVIDIA, have become widely available
to end-users. Accelerators offer tremendous compute power
at a low cost, and tasks such as media processing, medical
imaging and eye-tracking can be accelerated to beat CPU
performance by orders of magnitude.

GPUs present a serious challenge for software develop-
ers. A system may contain one or more of the plethora of
devices on the market, with many more products anticipated
in the immediate future. Applications must exhibit portable
correctness, operating correctly on any GPU accelerator.
Software bugs in media processing domains can have serious
financial implications, and GPUs are being used increasingly
in domains such as medical image processing [37] where
safety is critical. Thus there is an urgent need for verifica-
tion techniques to aid construction of correct GPU software.

This paper addresses the problem of static verification
of GPU kernels written in kernel programming languages
such as OpenCL [17], CUDA [30] and C++ AMP [28]. We
focus on two classes of bugs which make writing correct
GPU kernels harder than writing correct sequential code:
data races and barrier divergence.

In contrast to the well-understood notion of data races,
there does not appear to be a formal definition of barrier di-
vergence for GPU programming. Our work begins by giving
a precise characterization of barrier divergence via an oper-
ational semantics based on predicated execution, which we
call synchronous, delayed visibility (SDV) semantics. While
predicated execution has been used for code generation by
GPU kernel compilers, our work is the first to use predicated
operational semantics for the purpose of specification and
verification.

Founded on the SDV semantics, we design a verification
method which reduces analysis of concurrent GPU threads
to reasoning over a transformed sequential program. This
completely avoids reasoning about thread interleavings, and
enables reusing existing modular verification techniques for
sequential programs. We present novel heuristics for auto-
matically inferring loop invariants required for verification.

We have developed GPUVerify, a verifier for GPU ker-
nels that can be applied directly to OpenCL and CUDA
source code. We have used GPUVerify to analyse a set of
163 OpenCL and CUDA kernels. We divided this set into
training kernels and evaluation kernels, such that none of



our team had any experience with kernels in the evalua-
tion set. We used the training benchmarks to design and
tune GPUVerify’s invariant inference and performance. We
then ran GPUVerify blindly on the evaluation set, finding
that fully automatic verification was achieved for 49 out of
71 kernels (69 %). We also compare GPUVerify experimen-
tally with PUG, a recent formal analysis tool for CUDA ker-
nels [21]. GPUVerify performs competitively with PUG for
verification of correct kernels and rejects buggy kernels in
several cases where PUG reports false negatives. Addition-
ally, GPUVerify supports a finer shared state abstraction than
PUG, allowing verification of real-world kernels for which
PUG reports false positives.

GPUVerify, and all the non-commercial benchmarks used
for our evaluation, are available online.1

In summary, our paper makes the following contributions:

• Synchronous, delayed visibility semantics: a formal op-
erational semantics for GPU kernels based on predicated
execution, data-race freedom, and divergence freedom
• A verification method for GPU kernels based on auto-

matic abstraction followed by generation of verification
conditions to be solved via automated theorem proving
• A method for inferring automatically the invariants needed

for our verification method
• An extensive evaluation of our verifier on a collection

of 163 publicly available and commercial GPU kernels;
to our knowledge, this experimental evaluation is signif-
icantly larger, in terms of number of kernels, than any
previously reported evaluation of a tool for GPU kernel
analysis.

We begin by giving an overview of GPU kernel program-
ming and the most pressing difficulties faced by kernel pro-
grammers.

2. GPU kernel programming
A typical GPU (see Figure 1) consists of a large number of
simple processing elements (PEs), sometimes referred to as
cores. Subsets of the PEs are grouped together into multi-
processors, such that all PEs within a multiprocessor exe-
cute in lock-step, in single instruction multiple data (SIMD)
fashion. Distinct multiprocessors on a GPU can execute in-
dependently. Each PE is equipped with a small private mem-
ory, and PEs located on the same multiprocessor can access
a portion of shared memory dedicated to that multiproces-
sor. All PEs on the GPU have access to a large amount of
off-chip memory known as global memory, which is usually
separate from main CPU memory.

Today, there are three major GPU programming mod-
els: OpenCL, an industry standard proposed by the Khronos
Group and widely supported (in particular, OpenCL is
AMD’s primary high-level GPU programming model) [17];

1 http://multicore.doc.ic.ac.uk/tools/GPUVerify/
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Figure 1: Schematic overview of a typical GPU architecture

Term CUDA OpenCL C++ AMP
thread thread work-item thread
group thread block work-group tile
sub-group warp N/A N/A

Figure 2: Equivalent terms for thread, group and (where
applicable) sub-group in CUDA, OpenCL and C++ AMP

CUDA, from NVIDIA [30]; and C++ AMP, from Mi-
crosoft [28].
Threads and groups. All three programming models pro-
vide a similar high-level abstraction for mapping computa-
tion across GPU hardware, centered around the notion of a
kernel program being executed by many parallel threads,
together with a specification of how these threads should
be partitioned into groups. The kernel is a template speci-
fying the behavior of an arbitrary thread, parameterized by
thread and group id variables. Expressions over these ids al-
low distinct threads to operate on separate data and follow
differing execution paths through the kernel. Threads in the
same group can synchronize during kernel execution, while
threads in distinct groups execute completely independently.

The runtime environment associated with a GPU pro-
gramming model must interface with the driver of the avail-
able GPU to schedule execution of kernel threads across
processing elements. Typically each group of threads is as-
signed to one of the GPU’s multiprocessors, so that distinct
groups execute in parallel on different multiprocessors. If the
number of threads in a group is N and the number of PEs in
a multiprocessor isM , then a group is divided into dNM e sub-
groups, each consisting of up to M threads. Execution of a
single group on a multiprocessor then proceeds by round-
robin execution of the sub-groups. Each thread in a given
sub-group is pinned to a distinct PE, and all threads in the
same sub-group execute together in lock-step, following ex-
actly the same control path. Distinct sub-groups may follow
different control paths.

Figure 2 summarizes the specific terms used by the
three main GPU programming models to refer to threads,
groups and (in the case of CUDA) sub-groups. OpenCL
and C++ AMP aim for portability across GPUs from mul-
tiple vendors, so do not allow a kernel to query the device-



Program fragment Predicated form
if(lid > N)
x = 0;

else
x = 1;

p = (lid > N);
p => x = 0;
!p => x = 1;

while(i < x) {
i++;

}

p = (i < x);
while(∃ t :: t.p) {
p => i++;
p => p = (i < x);

}

Figure 3: Predicated forms for conditionals and loops

specific size or structure of thread sub-groups. As CUDA
is NVIDIA-specific, CUDA programmers can write ker-
nels that make assumptions about the division of threads
into sub-groups. However, such kernels will not easily port
to general-purpose GPU programming languages, and may
break when executed on future generations of NVIDIA hard-
ware that uses a different sub-group size. Thus GPU kernels
that do not make assumptions about the size of thread sub-
groups are preferable.
Predicated execution. Recall that the PEs in a GPU mul-
tiprocessor execute in lock-step, as a SIMD processor array.
Threads within a sub-group occupy a multiprocessor’s PEs,
and thus must also execute in lock-step. Conditional state-
ments and loops through which distinct threads in the same
sub-group should take different paths must therefore be sim-
ulated, and this is achieved using predicated execution.

Consider the conditional statement in the top-left of Fig-
ure 3, where lid denotes the local id of a thread within its
group and x is a local variable stored in private memory. This
conditional can be transformed into the straight-line code
shown in the top-right of the figure, which can be executed
by a sub-group in lock-step. The meaning of a statement
predicate=>command is that a thread should execute com-
mand if predicate holds for that thread, otherwise the thread
should execute a no-op. All threads evaluate the condition
lid > N into a local boolean variable p, then execute both
the then and else branches of the conditional, predicated by
p and !p respectively.

Loops are turned into predicated form by dictating that
all threads in a sub-group continue to execute the loop body
until the loop condition is false for all threads in the sub-
group, with threads for whom the condition does not hold
becoming disabled. This is illustrated for the loop in the
bottom-left of Figure 3 (where i and x are local variables)
by the code fragment shown in the bottom-right of the figure.
First, the condition i < x is evaluated into local variable p.
Then the sub-group loops while p remains true for some
thread in the sub-group, indicated by ∃t :: t.p. The loop
body is predicated by p, and thus has an effect only for
enabled threads.

We present precise operational semantics for predicated
execution in Section 3.

Barrier synchronization. When a thread t1 writes to an ad-
dress in shared or global memory, the result of this write is
not guaranteed to become visible to another thread t2 unless
t1 and t2 synchronize. As noted above, there is no mech-
anism for threads in distinct groups to synchronize during
kernel execution.2 Threads in the same group can synchro-
nize via barriers. Intuitively, a kernel thread belonging to
group g waits at a barrier statement until every thread in g
has reached the barrier. Passing the barrier guarantees that
all writes to shared and global memory by threads in g oc-
curring before execution of the barrier have been committed.

Our analysis through writing GPU kernels and talking
to GPU developers is that there are two specific classes of
bugs that make writing correct GPU kernels more difficult
than writing correct sequential code: data races and barrier
divergence.

2.1 Data races
We distinguish between two kinds of data races in GPU
kernels. An inter-group data race occurs if there are two
threads t1 and t2 from different groups such that t1 writes to
a location in global memory and t2 writes to or reads from
this location. An intra-group data race occurs if there are
two threads t1 and t2 from the same group such that t1 writes
to a location in global or shared memory, t2 writes to or reads
from this location, and no barrier statement is executed
between these accesses. Races can lead to nondeterministic
kernel behavior, and computation of incorrect results.

In this work, we restrict our attention to intra-group data
races because we consider them to be the more significant
problem for GPU programmers. Threads across groups can-
not synchronize and consequently the argument for absence
of inter-group data races is usually based on globally disjoint
memory access patterns. Threads within a group can syn-
chronize in sophisticated ways using the barrier operation;
consequently, the correctness argument is more complicated
and errors more likely.

2.2 Barrier divergence
If threads in the same group diverge, reaching different bar-
riers as in the following kernel fragment:
if((lid % 2) == 0) barrier(); // Even threads hit first barrier
else barrier(); // Odd threads hit second barrier

then kernel behavior is undefined. According to CUDA [30]:
“execution is likely to hang or produce unintended side
effects”.

While there is clarity across all programming models
for what barrier divergence means in loop-free code, the
situation is far from clear for code with loops. Consider the
example kernel shown on the left of Figure 4. This kernel
is intended to be executed by a group of four threads, and

2 Atomic operations on global memory are available in some GPU archi-
tectures, but cannot reliably implement inter-group synchronization due to
lack of progress guarantees between groups.



shared int A[2][4];

void kernel() {
int buf, x, y, i, j;
x = (lid == 0 ? 4 : 1);
y = (lid == 0 ? 1 : 4);
buf = i = 0;
while(i < x) {
j = 0;
while(j < y) {
barrier();
A[1-buf][lid] =
A[buf][(lid+1)%4];

buf = 1 - buf;
j++;

}
i++;

} }

...
p = (i < x);
while(∃ t :: t.p) {
p => j = 0;
q = p && (j < y);
while(∃ t :: t.q) {
q => barrier();
q => A[1-buf][lid] =

A[buf][(lid+1)%4];
q => buf = 1 - buf;
q => j++;
q => q = p && (j < y);

}
p => i++;
p => p = (i < x);

}

Figure 4: Illustration of the subtleties of barriers in nested
loops

declares an array A of two shared buffers, each of size four.
Local variable buf is an index into A, representing the current
buffer. The threads execute a nest of loops. On each inner
loop iteration a thread reads the value of the current buffer
at index lid+1 modulo 4 and writes the result into the non-
current buffer at index lid. A barrier is used to avoid data
races on A. Notice that local variables x and y are set to 4 and
1 respectively for thread 0, and to 1 and 4 respectively for all
other threads. As a result, we expect thread 0 to perform four
outer loop iterations, each involving one inner loop iteration,
while other threads will perform a single outer loop iteration,
consisting of four inner loop iterations.

According to the guidance in the CUDA documentation
such a kernel appears to be valid: all threads will hit the
barrier statement four times. Taking a snapshot of the array
A at each barrier and at the end of the kernel, we might
expect to see the following:
A = {{0, 1, 2, 3}, {−,−,−,−}} → {{0, 1, 2, 3}, {1, 2, 3, 0}}
→ {{2, 3, 0, 1}, {1, 2, 3, 0}} → {{2, 3, 0, 1}, {3, 0, 1, 2}}
→ {{0, 1, 2, 3}, {3, 0, 1, 2}}
However, consider the predicated version of the kernel

shown in part on the right of Figure 4. This is the form in
which the kernel executes on an NVIDIA GPU. The four
threads comprise a single sub-group. All threads will enter
the outer loop and execute the first inner loop iteration. Then
thread 0 will become disabled (q becomes false) for the in-
ner loop. Thus the barrier will be executed with some, but not
all, threads in the sub-group enabled. On NVIDIA hardware,
a barrier is compiled to a bar.sync instruction in the PTX
(Parallel Thread Execution) assembly language. According
to the PTX documentation [31], “if any thread in a [sub-
group] executes a bar instruction, it is as if all the threads
in the [sub-group] have executed the bar instruction”. Thus
threads 1, 2 and 3 will not wait at the barrier until thread 0 re-
turns to the inner loop: they will simply continue to execute
past the barrier, performing three more inner loop iterations.
This yields the following sequence of state-changes to A:
A = {{0, 1, 2, 3}, {−,−,−,−}} → {{0, 1, 2, 3}, {1, 2, 3, 0}}

Architecture Final state of A
NVIDIA Tesla C2050 {{0, 1, 0, 1}, {1, 0, 1, 0}}
AMD Tahiti {{0, 1, 2, 3}, {1, 2, 3, 0}}
ARM Mali-T600 {{0, 1, 2, 3}, {3, 0, 1, 2}}
Intel Xeon X5650 {{∗, ∗, ∗, 1}, {3, 0, 1, 2}}

Figure 5: The litmus test of Figure 4 yields a range of results
across varying platforms

→ {{0, 3, 0, 1}, {1, 2, 3, 0}} → {{0, 3, 0, 1}, {1, 0, 1, 0}}
→ {{0, 1, 0, 1}, {1, 0, 1, 0}}
After the inner loop exits, thread 0 becomes enabled,

but all other threads become disabled, for a further three
outer loop iterations, during each of which thread 0 executes
a single inner loop iteration. The state of A thus remains
{{0, 1, 0, 1}, {1, 0, 1, 0}}.

The OpenCL standard [17] gives a better, though still
informal definition, stating: “If a barrier is inside a loop, all
[threads] must execute the barrier for each iteration of the
loop before any are allowed to continue execution beyond
the barrier”, which at least can be interpreted as rejecting
the example of Figure 4.

To investigate this issue in practice, we implemented the
litmus test of Figure 4 in both CUDA and OpenCL and (with
help from contacts in the GPU industry; see Acknowledge-
ments) ran the test on GPU architectures from NVIDIA,
AMD and ARM, and on an Intel Xeon CPU (for which there
is an OpenCL implementation). Our findings are reported in
Figure 5. Observe that the test result does not agree between
any two vendors. The NVIDIA results match our above pre-
diction. The AMD result also appears to stem from pred-
icated execution. ARM’s Mali architecture does not work
using predicated execution [25], so perhaps unsurprisingly
gives the “intuitive” result we might expect. For Intel Xeon,
we found that different threads reported different values for
certain array elements in the final shared state, indicated by
asterisks in Figure 5, which we attribute to cache effects.

The example of Figure 4 is contrived in order to be small
enough to explain concisely and examine exhaustively. It
does, however, illustrate that barrier divergence is a subtle
issue, and that non-obvious misuse of barriers can compro-
mise correctness and lead to implementation-dependent re-
sults. Clearly a more rigorous notion of barrier divergence is
required than the informal descriptions found in the CUDA
and OpenCL documentation.

We give a precise, operational definition for barrier di-
vergence in Section 3 which clears up this ambiguity. In
essence, our definition states that if a barrier is encountered
by a group of threads executing in lock-step under a pred-
icate, the predicate must hold uniformly across the group,
i.e., the predicate must be true for all threads, or false for all
threads. This precise definition facilitates formal verification
of divergence-freedom.



3. Operational semantics for GPU kernels
Our aim is to verify race- and divergence-freedom for GPU
kernels. In order to do this, we require an operational seman-
tics for GPU kernels that specifies precisely the conditions
under which races and divergence occur.

For checking barrier divergence, the least conservative as-
sumption we can safely make is that a thread group consists
of a single sub-group, i.e., all threads in a group execute in
lock-step. This will indeed be the case, e.g., for a group of
32 threads executing on an NVIDIA GPU. We can then de-
fine barrier divergence to occur if the thread group executes a
barrier and the threads are not uniformly enabled: the current
predicate of execution holds for some threads but not others.
Clearly if we can prove divergence-freedom for a kernel un-
der this tight assumption, the kernel will also be divergence-
free if thread groups are actually divided into sub-groups
with a finer level of granularity.

For race checking, the scenario is reversed: the least con-
servative safe assumption is that threads in the same group
interleave completely asynchronously between pairs of bar-
riers, with no guarantees as to the relative order of statement
execution between threads. This is the case on ARM’s Mali
GPU architecture [25] (so that essentially every sub-group
consists of just a single thread). Clearly if race-freedom can
be proved under this most general condition, then a ker-
nel will remain race-free if, in practice, certain threads in
a group execute synchronously.

We propose a semantics which we call synchronous,
delayed visibility (SDV). Under SDV, group execution is
synchronous, allowing precise divergence checking. Each
thread’s shared memory accesses are logged, and the visibil-
ity of writes to shared memory by one thread to the group is
delayed until a barrier is reached. Delaying the visibility of
writes ensures that threads do not see a synchronized view
of shared and global memory between barriers, catering for
the fact that execution might not really be fully synchronous.
Logging accessed locations allows racing accesses to be de-
tected when threads synchronize at a barrier.

To describe the SDV semantics formally, we define Ker-
nel Programming Language (KPL), which captures the es-
sential features of mainstream languages for writing GPU
kernels. KPL describes execution of a single group of GPU
threads. Kernels in real GPU programming languages can
have multiple groups, but it suffices for checking divergence-
and intra-group race-freedom to model the execution of a
single arbitrary group.

3.1 Syntax
The syntax for KPL is shown in Figure 6. A KPL kernel
declares the total number of threads in the group that will
execute the kernel (threads: number), and the group’s id
(group: number), catering for the fact that in practice, the
group may be one of many. This is followed by a list of
procedure declarations followed by a main statement. Each

kernel ::= threads: number
group: number
proc∗

main: stmt
proc ::= procedure name var stmt
stmt ::= basic stmt | stmt; stmt

| local name stmt
| if local expr stmt else stmt
| while local expr stmt
| while local expr stmt
| name(local expr)
| barrier
| break | continue | return

basic stmt ::= loc := local expr
| loc := rd(local expr)
| wr(local expr, local expr)

local expr ::= gid | lid | loc
| constant literal of type Word
| local expr op local expr

loc ::= name | V
name ::= any valid C name

Figure 6: Syntax for Kernel Programming Language

procedure has a name, a single parameter and a body; for
brevity we do not model multiple parameters or return val-
ues. The final element in the program is a main statement.

For simplicity, but without loss of generality, threads have
access to a single shared array which we refer to as shared
memory. Since our goal is to verify absence of only intra-
group data races, we make no distinction between shared and
global memory (c.f. Figure 1) in our programming language.
We assume that every local variable and each indexable ele-
ment of shared memory has type Word, the type of memory
words. We assume that any value in Word can be interpreted
as an integer and a boolean. In practice, Word will also rep-
resent floating point numbers, and structured data will be
represented by sequences of values of type Word.

A thread may update one of its local variables by per-
forming a local computation, or by reading from the shared
state (v := rd(e), where e is an expression over local vari-
ables determining which index to read from). A thread may
also update the shared state (wr(e1, e2), where e1, e2 are
expressions over local variables, with e1 determining which
index to write to, and e2 the value to be written). For sim-
plicity, we assume all local variables are scalar.

Compound statements are constructed via sequencing,
conditional branches, local variable introduction, loops, and
procedure calls in the standard way. KPL provides a few
other statements: barrier, which is used to synchronize
threads; break, which causes execution to break out of
the closest enclosing loop; continue, which causes execu-
tion to jump to the head of the closest enclosing loop; and
return, which causes execution to return from the closest
enclosing procedure call.



Figure 6 specifies two syntactic elements which should
not appear directly in a KPL program; they are used in
the semantic rules of Figure 8 which we will explain in
Section 3.2. These are: a special while statement, used
to model the dynamic semantics of while loops in which
we have to distinguish between the first and subsequent
iterations of a loop, and a set V of locations from which
storage for local variables is allocated as they come into
scope dynamically.

We assume that the program is well-formed according to
the usual rules, e.g., statements should only refer to declared
variables and variable introduction should not hide a variable
introduced earlier in an enclosing scope. An extra require-
ment important for our semantics is that the main statement
must not contain a return and must end with a barrier.

We do not formalize features of GPU kernels such as
multi-dimensional groups and arrays. However, our verifi-
cation method and implementation, described in Section 4,
handles both.

3.2 Semantics

Notation. Given a function f : A → B and elements
a ∈ A, b ∈ B, we write f [a := b] to denote the function
g : A → B such that g(x) = f(x) for all x ∈ A \
{a}, and g(a) = b. We abbreviate f [a := b][c := d]
to f [a := b, c := d]. By viewing a tuple with named
components as a function mapping names to element values,
we also use this notation to specify updates to tuples. We use
〈s1, s2, . . . , sk〉 to denote a sequence of length k, and write
〈〉 for the empty sequence. We write s@ss for a sequence
whose first element is s, and whose remaining elements form
the sequence ss . We overload the @ operator and write ss@tt
for the concatenation of sequences ss and tt .
Thread and group states. To model the delayed visibility
aspect of SDV, shared state is distributed: each thread is
equipped with a shadow copy of shared memory. At the
start of kernel execution, every thread’s shadow memory
is identical. During execution, a thread reads and modifies
its shadow memory locally, and logs read and write sets
recording which addresses in shared memory the thread has
accessed. When a barrier statement is reached with all
threads enabled, the read and write sets are checked for data
races. If a race has occurred, execution aborts. Otherwise
the write sets are used to build a consistent view of shared
memory, the shadow memories are all reset to agree with this
view, and the read and write sets are cleared.

In what follows let P be a KPL kernel.
Let n denote the number of threads in the group executing

P , specified via threads: n in the definition of P . A thread
state for P is a tuple (lid , l, sh, R,W ) where:

• lid : Word is the thread’s id within the group.
• l : V → Word is the storage for the thread’s local

variables (recall that V is a set of locations).

• sh : N → Word is the thread’s shadow copy of shared
memory.
• R,W ⊆ N are the thread’s read and write sets, recording

the shared addresses the thread has accessed since the last
barrier.

We use σ to denote a thread state, and σ.lid , σ.l, σ.sh ,
etc., to refer to the components of σ. The set of all thread
states is denoted ThreadStates. For local expression e and
thread state σ, we write eσ for the result of evaluating e
according to σ.lid and σ.l. We do not provide a concrete
definition of eσ , which depends on the nature of the base
type Word and the available operators, except we specify
that vσ = σ.l(v) (where v ∈ V is a storage location),
lidσ = σ.lid , and gidσ = x where group: x is specified
in the definition of P .

A predicated statement is a pair (s, e), where s ∈ stmt
and e ∈ local expr. Intuitively, (s, e) denotes a statement
s that should be executed if e holds, and otherwise should
have no effect. The set of all predicated statements is denoted
PredStmts.

A group state for P is a tuple (Σ, ss) where:

• Σ = (σ0, . . . , σn−1) ∈ ThreadStatesn records a thread
state for each thread in the group
• ss ∈ PredStmts∗ is an ordered sequence of program

statements to be executed by the group

The set of all group states is denoted GroupStates. Given a
tuple of thread states Σ = (σ0, . . . , σn−1), we use Σ(i) to
denote σi.

A group state (Σ, ss) is a valid initial state of P if:

• ss = 〈(s, true)〉, where s is declared in P via main : s.
• Σ(i).lid = i and Σ(i).R = Σ(i).W = ∅ (0 ≤ i < n).
• Σ(i).l(v) = false for all v ∈ V (0 ≤ i < n).
• Σ(i).sh = Σ(j).sh (0 ≤ i, j < n).

The first two requirements are straightforward. The third re-
quirement ensures that local variables are initialized to the
value in Word corresponding to false . The final requirement
ensures that threads have a consistent but arbitrary initial
view of the shared state. Our state representation does not in-
clude a single, definitive shared state component: the shared
state is represented via the shadow copies held by individual
threads, which are initially consistent, and made consistent
again at each barrier.
Predicated group execution. The rules of Figure 7 define
a binary relation
→t ⊆ (ThreadStates× PredStmts)× ThreadStates

describing the evolution of one thread state into another
under execution of a predicated statement. For readability,
given a thread state σ and predicated statement (s, p), we
write (σ, s, p) instead of (σ, (s, p)).

Rule T-DISABLED ensures that a predicated statement
has no effect if the predicate does not hold, indicated by



¬pσ

(σ, basic stmt, p)→t σ
(T-DISABLED)

pσ l′ = σ.l[v := eσ]

(σ, v := e, p)→t σ[l := l′]
(T-ASSIGN)

pσ l′ = σ.l[v := σ.sh(eσ)] R′ = σ.R ∪ {eσ}
(σ, v := rd(e), p)→t σ[l := l′, R := R′]

(T-RD)

pσ sh ′ = σ.sh[eσ1 := eσ2 ] W ′ = σ.W ∪ {eσ1}
(σ,wr(e1, e2), p)→t σ[sh := sh ′,W := W ′]

(T-WR)

Figure 7: Rules for predicated execution of basic statements

¬pσ in the rule’s premises; T-ASSIGN updates σ.l according
to the assignment; T-RD updates the thread’s local store
with an element from the thread’s shadow copy of shared
memory, and records the address that was read from; rule
T-WR is analogous.

Figure 8 defines a binary relation
→g ⊆ GroupStates× (GroupStates ∪ {error}),

where error is a designated error state. This relation de-
scribes the evolution of a group as it executes a sequence
of predicated statements. Collective execution of a predi-
cated basic statement is achieved by every thread execut-
ing the statement, the order in which they do so is irrelevant
(G-BASIC).

If the group is due to execute a barrier statement un-
der predicate p but not all threads agree on the truth of p,
the error state is reached (G-DIVERGENCE). This precisely
captures the notion of barrier divergence discussed in Sec-
tion 2. Execution of barrier when all threads are disabled
has no effect (G-NO-OP).

Intra-group races are detected via rule G-RACE. This rule
states that if a group is due to execute a barrier statement
and all threads are enabled, then when we compare the read
and write sets computed by each thread, we must not find
distinct threads i and j such that the write set for thread i
intersects with either the read or write set for thread j. If
this scenario occurs, the error state is reached. The predicate
races(Σ) is defined as follows:

races(Σ) = ∃ 0 ≤ i 6= j < n.
(Σ(i).R ∪ Σ(i).W ) ∩ Σ(j).W 6= ∅

The most intricate rule of Figure 8 is G-SYNC which cap-
tures the effect of a barrier synchronization in the absence of
data races. A new thread state Σ′(i) is constructed for each
thread i, with the same local component l as before the bar-
rier. The barrier enforces a consistent view of shared mem-
ory across the group by setting the shared shadow memories
sh identically in each Σ′(i). This is achieved using a func-
tion merge. If thread i has recorded a write to shared mem-
ory location z, i.e. z ∈ Σ(i).W , then merge(Σ) maps z to
the value at address z in thread i’s shadow memory, i.e. to

∀ 0 ≤ i < n . (Σ(i), basic stmt, p)→t Σ′(i)

(Σ, (basic stmt, p)@ss)→g (Σ′, ss)
(G-BASIC)

∃ 0 ≤ i 6= j < n . pΣ(i) ∧ ¬pΣ(j)

(Σ, (barrier, p)@ss)→g error
(G-DIVERGENCE)

∀ 0 ≤ i < n . ¬pΣ(i)

(Σ, (barrier, p)@ss)→g (Σ, ss)
(G-NO-OP)

∀ 0 ≤ i < n . pΣ(i) races(Σ)

(Σ, (barrier, p)@ss)→g error
(G-RACE)

∀ 0 ≤ i < n . pΣ(i) ¬races(Σ)
∀ 0 ≤ i < n . Σ′(i) = (Σ(i).lid ,Σ(i).l,merge(Σ), ∅, ∅)

(Σ, (barrier, p)@ss)→g (Σ′, ss)
(G-SYNC)

(Σ, (S1;S2, p)@ss)→g (Σ, (S1, p)@(S2, p)@ss) (G-SEQ)

fresh v ∈ V
(Σ, (local x S, p)@ss)→g (Σ, (S[x 7→ v], p)@ss)

(G-VAR)

fresh v ∈ V
(Σ, (if e S1 else S2, p)@ss)→g

(Σ, (v := e, p)@(S1, p ∧ v)@(S2, p ∧ ¬v)@ss)

(G-IF)

fresh v ∈ V
(Σ, (while e S, p)@ss)→g

(Σ, (while e belim(S, v), p ∧ ¬v)@ss)

(G-OPEN)

∃ 0 ≤ i < n . (p ∧ e)Σ(i)

fresh u, v ∈ V q = p ∧ u ∧ ¬v
(Σ, (while e S, p)@ss)→g

(Σ, (u := e, p)@(celim(S, v), q)@(while e S, p)@ss)

(G-ITER)

∀ 0 ≤ i < n . ¬(p ∧ e)Σ(i)

(Σ, (while e S, p)@ss)→g (Σ, ss)
(G-DONE)

fresh u, v ∈ V S = Body(f)[Param(f) 7→ u]

(Σ, (f(e), p)@ss)→g

(Σ, (u := e; relim(S, v), p ∧ ¬v)@ss)

(G-CALL)

Figure 8: Rules for lock-step execution of a group

Σ(i).sh(z). Formally, merge(Σ) is a map satisfying the fol-
lowing constraints:
z ∈ Σ(i).W 0 ≤ i < n

merge(Σ)(z) = Σ(i).sh(z)

∀ 0 ≤ i < n . z /∈ Σ(i).W

merge(Σ)(z) = Σ(0).sh(z)

Because races(Σ) is false (a premise of the rule), merge(Σ)
is unique. Finally, the read and write sets of all threads are
cleared.

The remaining rules in Figure 8 describe predicated exe-
cution for compound statements. Rule G-SEQ is straightfor-
ward. Rule G-VAR creates storage for a new local variable
x by allocating a fresh location v in V and substituting all
occurrences of x in S by v; we use the notation S[x 7→ v]
to denote this substitution. Rule G-IF decomposes a condi-
tional statement into a sequence of predicated statements:



the conditional’s guard is evaluated into a new location v,
the then branch S1, is executed by all threads under predi-
cate p ∧ v (where p is the predicate of execution already in
place on entry to the conditional), and the else branch S2, is
executed by all threads under predicate p ∧ ¬v.

The rules G-OPEN, G-ITER and G-DONE together model
predicated execution of a while loop. In what follows, we
say that a break or continue statement is top-level in a
loop if the statement appears in the loop body but is not
nested inside any further loops.

Rule G-OPEN converts a while loop into a while loop
by creating fresh storage to model break statements. A
fresh location v is selected; v records whether a thread has
executed a break statement associated with the while loop.
Like all local storage, v has initial value false: no thread has
executed break on loop entry. The function belim is applied
to the loop body. This function takes a statement S and a lo-
cation v and replaces each top-level break statement inside
S by the statement v := true . Furthermore, the predicate for
the execution of the while loop becomes p ∧ ¬v to model
that statements in the loop have no effect subsequent to the
execution of a break statement. A similar technique is used
to model break statements in [14].

The G-ITER rule models execution of loop iterations, and
handles continue statements. Two fresh local storage loca-
tions u and v are selected (both initialized to false). Location
u is used to store the valuation of the loop guard. Location
v is used to record whether a thread has executed a top-level
continue statement during the current loop iteration; v is
initially false because no thread has executed a continue
statement at the beginning of an iteration. First, the statement
u := e (executed under enclosing predicate p) evaluates the
loop guard into u. Then function celim is applied to the
loop body; this function takes a statement S and a location
v and replaces each top-level continue statement inside S
by the statement v := true . The loop body, after elimina-
tion of continue statements, is executed under the predicate
p ∧ u ∧ ¬v (denoted q in rule G-ITER): a thread is enabled
during the current iteration if the incoming predicate holds
(p), the loop guard evaluated to true at the start of the itera-
tion (u) and the thread has not executed a continue state-
ment (¬v). (Note that, due to rule G-OPEN, the incoming
predicate p includes a conjunct recording whether the thread
has executed a break statement.) After the loop body, the
while construct is considered again.

Thus, all threads continuously execute the loop body us-
ing G-ITER until, for for every thread, a) the enclosing pred-
icate p becomes false, either because this predicate was false
on loop entry or because the thread has executed break, or
b) the loop condition no longer holds for the thread. When a)
or b) is the case for all threads, loop exit is handled by rule
G-DONE.

The rule G-CALL models the execution of a call to a pro-
cedure f . This involves executing the statement correspond-

ing to the body of the called procedure (Body(f)) after re-
placing all occurrences of its formal parameter (Param(f))
with the given actual parameter expression. All threads ex-
ecute the entire body of a procedure in lock-step. A fresh
storage location v is used to record whether a thread has ex-
ecuted a return statement within the procedure body. Initially
this location is set to false , and function relim replaces each
return statement in Body(f) with the statement v := true .
The procedure body is executed under the predicate p ∧ ¬v
(where p is the existing predicate of execution at the point of
the call) so that execution of a return statement by a thread is
simulated by the thread becoming disabled for the remainder
of the procedure body.

4. Verification method
Armed with the SDV semantics of Section 3, we now con-
sider the problem of verifying that a GPU kernel is race-
and divergence-free. For this purpose, we have designed a
tool, GPUVerify, built on top of the Boogie verification sys-
tem [2]. Boogie takes a program annotated with loop invari-
ants and procedure contracts, and decomposes verification
into a set of formulas to be checked automatically by the Z3
theorem prover [8]. We describe challenges associated with
automatically translating OpenCL and CUDA kernels into
a Boogie intermediate representation (Section 4.1), a tech-
nique for transforming this Boogie representation of the ker-
nel into a standard sequential Boogie program whose cor-
rectness implies race- and divergence-freedom of the orig-
inal kernel (Section 4.2), and a method for automatically
inferring invariants and procedure contracts to enable auto-
matic verification (Section 4.3).

4.1 Translating OpenCL and CUDA into Boogie
To allow GPUVerify to be applied directly to source code
we have implemented a compiler that translates GPU ker-
nels into an intermediate Boogie form. Our compiler is built
on top of the CLANG/LLVM infrastructure [24] due to its
existing support for both OpenCL and CUDA language ex-
tensions.

There were effectively three challenges with respect to
this compilation. First, many industrial applications utilise
features of OpenCL and CUDA not present in vanilla C, such
as declaring variables as vector or image types, or calling in-
trinsic functions; we therefore invested significant engineer-
ing effort into designing equivalent Boogie types and func-
tions. Second, the Boogie language does not support floating
point values directly, thus we modelled them abstractly via
uninterpreted functions. This sound over-approximation can
in principle lead to false positives, but in our extensive eval-
uation (Section 5) we have only encountered one instance of
this, where race-freedom depends on concrete floating point
values. The third issue, namely handling of pointers, is more
interesting technically and is now discussed in depth.



Source Generated Boogie
p = A; p = int_ptr(A_base, 0);

q = p; q = p;

foo(p); foo(p);

p = q + 1; p = int_ptr(q.base, q.offset + 1);

p[e] = d;

if(p.base == A_base)
A[p.offset + e] = d;

else if(p.base == B_base)
B[p.offset + e] = d;

else assert(false);

x = p[e];

if(p.base == A_base)
x = A[p.offset + e];

else if(p.base == B_base)
x = B[p.offset + e];

else assert(false);

Figure 9: Translating pointer usage into Boogie

Modelling pointers. Boogie is a deliberately simple inter-
mediate language, and does not support pointer data types
natively. We have devised an encoding of pointers in Boogie
which we explain using an example. For readability we use
C-like syntax rather than the Boogie input language.

Suppose a kernel declares exactly two integer arrays (in
any memory space) and two integer pointers:
int A[1024], B[1024];
int *p, *q;

In this case GPUVerify generates the following types:
enum int_ptr_base = { A_base, B_base, null, none };

struct int_ptr {
int_ptr_base base;
int offset;

};

Thus an integer pointer is modelled as a pair consisting of a
base array, or one of the special values null or none if the
pointer is null or uninitialized, respectively, and an integer
offset from this base. The offset is in terms of number of
elements, not bytes.

Pointers p and q can be assigned to offsets from A or B, to
null, or can be left uninitialized. Figure 9 shows how uses
of p and q are translated into Boogie.

Statement p = q + 1 demonstrates that pointer arith-
metic is straightforward to model using this encoding.
Pointer writes and reads are modelled by a case split on
all the possible bases for the pointer being dereferenced.
If no base matches then the pointer is either uninitialized or
null. These illegal dereferences are captured by an assertion
failure. This encoding exploits the fact that in GPU kernels
there are a finite, and usually small, number of explicitly
declared pointer targets.

We deal with stack-allocated local variables whose ad-
dresses are taken by rewriting these variables as arrays of
length one, and transforming corresponding accesses to such
variables appropriately. This is made possible by the fact that
GPU kernel languages do not permit recursion.
Points-to analysis. The case-split associated with pointer
dereferences can hamper verification of kernels with pointer-

manipulating loops, requiring loop invariants that disam-
biguate pointer dereferences. To avoid this, we have imple-
mented Steensgaard’s flow- and context-insensitive pointer
analysis algorithm [36]. Although this over-approximates
the points-to sets, our experience of GPU kernels is that
aliasing is scarce and therefore precision is high. Returning
to the above example, suppose points-to analysis determines
that p may only refer to array A (or be null or uninitialized).
In this case, the assignment p[e] = d is translated to:
if(p.base == A_base) A[p.offset + e] = d;
else assert(false);

As well as checking for dereferences of null or uninitialized
pointers, the assert(false) case ensures that potential bugs
in our points-to analysis do not lead to unsound verification.

4.2 Reducing race- and divergence-checking to
sequential program verification

Having compiled an OpenCL or CUDA kernel into corre-
sponding Boogie form, GPUVerify attempts to verify the
kernel. We describe the verification strategy employed by
GPUVerify using a worked example.

Consider the kernel of Figure 10a, adapted from part of a
C++ AMP application that computes the transitive closure
of a graph using Warshall’s algorithm, and simplified for
ease of presentation. The kernel is written for a single, 2-
dimensional group of SZ×SZ threads. A thread’s local id is
2D, with x and y components lidX and lidY, respectively.
The kernel declares a 2D shared array of booleans, gr, rep-
resenting the adjacency matrix of a graph.
Access logging instrumentation. A kernel is first instru-
mented with calls to procedures that will log accesses to
shared arrays. Figure 10b shows the example kernel of Fig-
ure 10a after access logging instrumentation. Observe for
example that the condition gr[lidY][k] && gr[k][lidX]3

involves two read accesses to gr, thus is pre-pended by two
calls to LOG_RD_gr.
Reduction to a pair of threads. After access logging, the
kernel must be translated into a form which models the
predicated execution of multiple threads in a group. Ini-
tially, we attempted to directly encode the SDV semantics
of Section 3, modeling lock-step execution of all threads in
a group. Unfortunately, modeling in this way required heavy
use of quantifiers, especially for implementing the G-SYNC
rule of Figure 8 and associated merge function. This led to
Boogie programs outside the decidable theory supported by
the Z3 theorem prover. As a result, verification of micro ker-
nels took in the order of minutes, while verification attempts
for large kernels quickly exhausted memory limits.

Both the properties of race- and divergence-freedom are
stated pairwise: a race occurs when accesses by two threads
conflict, and divergence occurs when a barrier is executed
in a state where one thread is enabled and another disabled.
3 For ease of presentation we treat the operands of && as being evaluated si-
multaneously. In reality, short-circuit evaluation introduces an extra branch.



void barrier();

shared bool gr[SZ][SZ];

void kernel() {
int k = 0;
while(k < SZ)
{
if(!gr[lidY][lidX])
{
if(gr[lidY][k] &&

gr[k][lidX])
{
gr[lidY][lidX]
= true;

}
}
barrier();
k++;

}
}

(a) Example kernel

void barrier();
void LOG RD gr(int y, int x);
void LOG WR gr(int y, int x);

shared bool gr[SZ][SZ];

void kernel() {
int k = 0;
while(k < SZ) {
LOG RD gr(lidY, lidX);
if(!gr[lidY][lidX]) {
LOG RD gr(lidY, k);
LOG RD gr(k, lidX);
if(gr[lidY][k] &&

gr[k][lidX]) {
LOG WR gr(lidY, lidX);
gr[lidY][lidX] = true;

}
}
barrier();
k++;

} }

(b) Kernel after race instrumentation

void barrier(bool en1, bool en2);
void LOG RD gr(bool en1, int y1, int x1,

bool en2, int y2, int x2);
void LOG WR gr(bool en1, int y1, int x1,

bool en2, int y2, int x2);
bool gr1[SZ][SZ], gr2[SZ][SZ];

void kernel() {
int k1, k2;
bool LC1, LC2, P1, P2, Q1, Q2; // Predicates
// Assume that the pair of threads are distinct
assume(lidX1 != lidX2 || lidY1 != lidY2);
// Not shown: assume that thread ids lie in appropriate range
k1, k2 = 0, 0;
LC1, LC2 = k1 < SZ, k2 < SZ;
while(LC1 || LC2) {
LOG RD gr(LC1, lidY1, lidX1, LC2, lidY2, lidX2);
P1, P2 = LC1 && !gr1[lidY1][lidX1],

LC2 && !gr2[lidY2][lidX2];
LOG RD gr(P1, lidY1, k1, P2, lidY2, k2);
LOG RD gr(P1, k1, lidX1, P2, k2, lidX2);
Q1, Q2 = P1 && gr1[lidY1][k1] && gr1[k1][lidX1],

P2 && gr2[lidY2][k2] && gr2[k2][lidX2];
LOG WR gr(Q1, lidY1, lidX1, Q2, lidY2, lidX2);
gr1[lidY1][lidX1], gr2[lidY2][lidX2] =

Q1 ? true : gr1[lidY1][lidX1],
Q2 ? true : gr2[lidY2][lidX2];

barrier(LC1, LC2);
k1, k2 = LC1 ? k1 + 1 : k1, LC2 ? k2 + 1 : k2;
LC1, LC2 = LC1 && k1 < SZ, LC2 && k2 < SZ;

} }

(c) Kernel after transformation to 2-thread predicated form

Figure 10: Example illustrating how GPUVerify transforms
a kernel into two-threaded, predicated form for verification

Based on this observation, we can consider transforming a
kernel into a form where the predicated execution of only
two threads is modeled. If we can prove a kernel race- and
divergence-free for a pair of distinct but otherwise arbitrary
threads, we can conclude correctness of the kernel. The de-
sign of the PUG verifier for CUDA kernels also hinges on
this observation [21]. Because a two-threaded predicated
program with lock-step execution is essentially a sequen-
tial program consisting of parallel assignments to pairs of
variables, reasoning about GPU kernels at this level com-
pletely avoids the problem of exploring interleavings of con-

current threads, and allow us to leverage existing techniques
for modular reasoning about sequential programs.

For this approach to be sound, we must approximate
rule G-SYNC of Figure 8, abstracting the values written
to the shared state by threads that are not modeled. This
can be achieved in multiple ways. We have considered the
following strategies:

• Adversarial abstraction: The shared state is completely
removed; reads are replaced with non-deterministic as-
signments.
• Equality abstraction: Both threads manipulate a shadow

copy of the shared state. At a barrier, the shadow copies
are set to be arbitrary, but equal. Thus on leaving the bar-
rier, the threads have a consistent view of shared memory.

We have found several example kernels (including the
kernel of Figure 10a) where race-freedom hinges on threads
agreeing on the value of certain shared locations. In these
cases, adversarial abstraction is too strong for successful
verification. However, in many such cases, it does not matter
what specific value is stored in shared memory, only that all
threads see the same value. The equality abstraction suffices
for such cases. Our use of equality abstraction allows us
to improve upon the precision of prior work [21] which is
limited to adversarial abstraction.

Using adversarial abstraction, when it suffices, proves to
be more efficient than equality abstraction. GPUVerify ap-
plies abstraction on array-by-array basis. We have imple-
mented an inter-procedural control dependence analysis to
over-approximate those shared arrays whose values may in-
fluence control flow. Arrays which may influence control
flow are handled using equality abstraction and all others us-
ing adversarial abstraction. We have found this heuristic typ-
ically leads to equality abstraction being applied only when
it is required.

While the equality or adversarial abstractions suffice for
verification of the vast majority of kernels we have stud-
ied, equality abstraction is not sufficient when correctness
depends upon richer properties of the shared state. For in-
stance, suppose a kernel declares shared arrays A and B, and
includes a statement:

A[B[lid]] = ...

Write-write race freedom of A requires that B[i] != B[j]

for all distinct i and j. In practice, we have found that this
prohibits verification of kernels which perform a prefix sum
operation into an array B, and then use B to index into an
array A as shown above. We plan to investigate richer shared
state abstractions to overcome this limitation in future work.

Figure 10c shows the result of transforming the access-
instrumented version of the kernel (Figure 10b) into a form
where the predicated execution of a pair of arbitrary, dis-
tinct threads is modeled, using the equality abstraction. (The
transformation using adversarial abstraction is identical, ex-



cept that the arrays gr1 and gr2 are eliminated, and reads
from these arrays are made nondeterministic.)

The id of the first thread is represented by the pair lidX1,
lidY1, and similarly for the second thread. The assume state-
ment dictates that at least one of lidX and lidY should differ
between the threads; we omit an additional precondition en-
suring that the id components lie in the range [0..SZ-1].

Local variable k is duplicated, and the assignment k = 0

replaced with a parallel assignment, setting k1 and k2 to
zero. The kernel declares fresh boolean variables LC, P and
Q (duplicated for each thread). These are used to model
predicated execution of the while loop (LC) and the outer and
inner conditionals (P and Q respectively). In the examples of
Section 2, and in the operational semantics of Section 3, we
specified that under predicated execution a while loop should
continue to execute while there exists a thread for which
the condition holds. In the presence of just two threads,
existential quantification turns into disjunction, hence the
loop condition LC1 || LC2.

In Figure 10c, parameters to the LOG_RD_gr and LOG_WR_gr

procedures are duplicated, with a parameter being passed for
each thread. In addition, a predicate parameter, en, is passed
for each thread, recording whether the thread is enabled dur-
ing the call (c.f. the incoming predicate p in the G-CALL rule
of Figure 8). If LOG_RD_gr is called with false as its en1 pa-
rameter, this indicates that the first thread is not enabled, and
thus a read should not be logged for this thread. Similarly,
barrier is equipped with a pair of predicate parameters, en1
and en2.
Proof sketch for two-thread reduction. First, consider
an alternative semantics with a different version of the rule
G-SYNC in which the shadow states for each thread are
either set to a completely arbitrary value (adversarial ab-
straction) or an arbitrary but consistent value (equality ab-
straction). It is easy to see that either of these two alterna-
tive semantics is an abstraction of the original semantics:
(1) all states reachable via race-free and divergence-free ex-
ecutions at barrier operations are preserved; (2) all diver-
gences and data-races are preserved. Now suppose there is a
data-race between two threads with indices i and j. Since the
two-thread program is based on the abstract version of rule
G-SYNC and the indices of the two threads in this program
are arbitrary symbolic constants, the two-thread program can
simulate the behavior of threads i and j all the way up to the
data-race. Therefore, the two-thread program will also have
a data-race. The argument for divergence is similar.
Handling multiple procedures. During the transformation
to two-threaded form, the parameter list of each user-defined
procedure is duplicated, and (as with the LOG and barrier

procedures) enabled predicates are added for each thread.
The procedure body is then translated to two-threaded, pred-
icated form, with every statement guarded by the enabled
predicate parameters. Correspondingly, actual parameters

are duplicated at call sites, and the current predicates of ex-
ecution passed as enabled parameters.
Checking divergence. Under the two-thread encoding, in-
serting a check for barrier divergence is trivial: the barrier

procedure merely asserts that its arguments en1 and en2 are
equal. This two-threaded version of rule G-DIVERGENCE
(Figure 8) precisely matches the notion of barrier divergence
presented formally in Section 3. We may wish to only check
divergence-freedom for a kernel, if verifying race-freedom
proves too difficult. This is sound under adversarial ab-
straction, where every read from the shared state returns
an arbitrary value. A kernel that can be shown divergence-
free under this most general assumption is guaranteed to be
divergence-free under any schedule of shared state modifi-
cations. If we prove divergence-freedom for a kernel under
the equality abstraction, we can conclude a weaker property
than divergence-freedom: that barrier divergence cannot oc-
cur unless a data race has occurred. Note that our divergence
checking is stricter than that attempted by the PUG veri-
fier [21] which merely requires threads which follow dif-
ferent conditional paths through a kernel to pass the same
number of barriers.4 While PUG reports micro-kernels ex-
hibiting the divergence bugs discussed in Section 2 as suc-
cessfully verified, such kernels are rejected by GPUVerify.
Race checking. The LOG_RD and LOG_WR procedures are
responsible for manipulating a read and write set for each
thread, for each of the kernel’s shared arrays. According to
the semantics of Section 3 (rule G-RACE of Figure 8), race
checking then involves asserting inside barrier for each
array A that the read and write sets for A do not conflict
between threads. Alternatively, we can immediately assert
race-freedom whenever an access is logged. GPUVerify em-
ploys this eager method, which we have found leads to faster
analysis.

We encode read and write sets efficiently by exploiting
nondeterminism, similar to a method used in prior work [9,
10]. For each shared arrayA with index type T we introduce
the following variables for each thread i under consideration
(where i ∈ {1, 2}):
• WR exists Ai : bool
• WR elem Ai : T
• RD exists Ai : bool
• RD elem Ai : T

Boolean WR exists Ai is set to true if and only if thread
i’s write set for A is non-empty. In this case, WR elem Ai
represents one element of this write set: an index intoA. The
corresponding RD variables for read sets are similar.

Initially WR/RD exists Ai is false for each thread be-
cause the read/write sets are empty. The LOG_WR_A proce-
dure then works as follows: for each thread i, if i is enabled

4 In a subsequent paper on dynamic symbolic execution of CUDA ker-
nels [23] the authors of [21] improve this check to restrict to textually
aligned barriers.



on entry to the procedure (predicate parameter eni is true),
then the thread nondeterministically chooses to do nothing,
or to set WR exists Ai to true and WR elem Ai to the index
being logged. Procedure LOG_RD_A operates similarly. This
strategy ensures that if WR exists Ai holds, WR elem Ai is
the index of an arbitrary write to A performed by thread i.
Checking absence of write-write races can then be achieved
by placing the following assertion in the LOG_WR_A proce-
dure:

assert(!(WR exists A1 ∧WR exists A2∧
WR elem A1 == WR elem A2));

Procedure LOG_WR_A works analogously, and a similar asser-
tion is used to check read-write races.

Because this encoding tracks an arbitrary element of
each read and write set, if the sets can have a common,
conflicting element this will be tracked by both threads along
some execution trace, and the generated assertion will fail
along this trace. If we can prove for every array that the
associated assertions can never fail, we can conclude that
the kernel is race-free. At a barrier, read and write sets
are cleared via assuming that every WR/RD exists is false,
i.e., by terminating all execution paths along which read or
written elements were logged.
Tolerating benign write-write races. In practice it is quite
common for threads to participate in benign write-write
races, where identical values are written to a common lo-
cation without synchronization. When equality abstraction
is used, GPUVerify tolerates this kind of race by adding a
conjunct to the above assertion to check that the values writ-
ten are not equal.

4.3 Invariant inference
GPUVerify produces a Boogie program akin to the trans-
formed kernel of Figure 10c, together with implementations
of barrier and all LOG_RD/WR procedures. This program
must be verified to prove race- and divergence-freedom of
the original kernel. Verification hinges on finding inductive
invariants for loops and contracts for procedures.

We have found that invariant generation using abstract
interpretation over standard domains (such as intervals or
polyhedra) is not effective in verifying GPU kernels. This is
partly due to the data access patterns exhibited by GPU ker-
nels and discussed in detail below, where threads do not tend
to read or write from contiguous regions of memory, and also
due to the predicate nature of the programs produced by our
verification method.

Instead, we use the Houdini [12] algorithm as the basis
for inferring invariants and contracts. Houdini is a method
to find the largest set of inductive invariants from amongst
a user-supplied pool of candidate invariants. Houdini works
as a fixpoint procedure; starting with entire set of invariants,
it tries to prove that the current candidate set is inductive.
The invariants that cannot be proved are dropped from the
candidate set and the procedure is repeated until a fixpoint

is reached. We discuss the relationship between Houdini and
other invariant generation techniques briefly in Section 6.

Through manually deducing invariants for a set of kernels
(the training set described in our experimental evaluation,
Section 5) we have devised a number of candidate genera-
tion rules which we outline below. We emphasise that the
candidate invariants generated by GPUVerify are just that:
candidates. The tool is free to speculatively generate can-
didates that later turn out to be incorrect: these are simply
discarded by Houdini. A consequence is that incorrect or
unintended candidates generated due to bugs in GPUVerify
cannot compromise the soundness of verification.

Our candidate generation rules are purely heuristic. The
only fair way to evaluate these carefully crafted heuristics is
to evaluate GPUVerify with respect to a large set of unknown
benchmarks. We present such an evaluation in Section 5.1.

Candidate invariant generation rules. In what follows,
lid and SZ denote a thread’s local id, and the size of the
thread group, respectively, and ==> denotes implication. For
clarity, we present the essence of each rule; the GPUVerify
implementation is more flexible (e.g., being insensitive to the
order of operands to commutative operations, and detecting
when a thread’s id has been copied into another local vari-
able). For each of the rules associated with shared memory
writes, there is an analogous rule for reads.

Rule: access at thread id plus offset.
Condition: A[lid + C] = ... occurs in loop

Generated candidate:
WR_exists_A ==> WR_elem_A - C == lid

Rationale: It is common for a thread to write to an array
using its thread id, plus a constant offset (which is often zero)
as index; this access pattern is illustrated as follows:

C lid + C

A
SZ

Rule: access at thread id plus strided offset.
Conditions: A[lid + i*SZ + C] = ... occurs in loop

i is live at loop head

Generated candidate:
WR_exists_A ==> ((WR_elem_A - C) % SZ) == lid

Rationale: When processing an array on a GPU, it is typi-
cally efficient for threads in a group to access data in a coa-
lesced manner as in the following example:

for(i = 0; i < 256; i++)
A[i*SZ + lid + C] = ...;

This access pattern is illustrated as follows:

C lid + C

A
SZ

lid + SZ + C lid + 2*SZ + C

...



Rule: access at thread id plus strided offset, with strength
reduction.
Conditions: i = lid appears before loop

A[i+C] = ... occurs in loop
i = i + SZ appears in loop body
i is live at loop head

Generated candidates:
(i % SZ) == lid

WR_exists_A ==> ((WR_elem_A - C) % SZ) == lid

Rationale: Same as the previous rule. However, GPU pro-
grammers commonly apply the strength reduction operation
manually, rewriting the above code snippet as follows:
for(i = lid; i < 256*SZ; i += SZ)
A[i + C] = ...;

In this case, the write set candidate invariant will not be
inductive in isolation: the invariant (i % SZ) == lid is re-
quired in addition.
Rule: access contiguous range.
Conditions: A[lid*C + i] = ... occurs in loop

i is live at loop head
Generated candidates:

WR_exists_A ==> lid*C <= WR_elem_A

WR_exists_A ==> WR_elem_A < (lid + 1)*C

Rationale: It is common for threads to each be assigned a
fixed-size chunk of an array to process. This access pattern
is illustrated as follows:

lid*C

A
C

...

(lid + 1)*C

Rule: variable is zero or a power of two.
Conditions: i = i*2 or i = i/2 occurs in loop

i is live at loop head
D is the smallest power of 2 with D ≥ SZ

Generated candidates:
i&(i-1)==0, i!=0, i<1, i<2, i<4, . . . , i<D

Rationale: GPU kernels frequently perform tree reduction
operations on shared memory, as in the code snippet be-
low. Race-freedom is ensured through the use of a bar-
rier, together with a guard ensuring that threads which have
dropped out of the reduction computation do not write to
shared memory. Verifying race-freedom requires an invari-
ant that the loop counter is a power of two in a prefix-
closed range, possibly including zero. The above rule gen-
erates a linear number of candidates which capture all rele-
vant prefix-closed ranges. The access pattern for such a tree
reduction with respect to a group of 8 threads (SZ == 8) is
illustrated below. A grey square containing a thread id indi-
cates a memory access by the associated thread; dark grey
indicates both a read and a write, while light grey indicates
a read only.
for(i = 1; i < SZ; i *= 2) {
if((lid % (2*i)) == 0) {
A[lid] += A[lid + i];

}
barrier();

}

0 2 4 60 2 4 6

0 40 4

0 0

i = 1

i = 2

i = 4

barrier

barrier

A

A

A

GPUVerify includes a number of additional candidate
generation rules that are intimately related to the details of
our transformation of a kernel to a predicated sequential
program. We omit details of these rules as they are very
specific and less intuitive.

We have also designed rules to generate candidate pre-
and post-conditions for procedures. We do not discuss these
rules: although they allow us to perform modular verification
of some GPU kernels, we find that for our current bench-
marks (which are representative of the sizes of today’s GPU
kernels), full procedure inlining yields superior performance
to modular analysis.

5. Experimental evaluation
Benchmarks. We evaluate GPUVerify using four bench-
mark suites, comprising 163 kernels in total:

• AMD SDK: AMD Accelerated Parallel Processing SDK
v2.6 [1], 71 publicly available OpenCL kernels
• CUDA SDK: NVIDIA GPU Computing SDK v2.0 [29],

20 publicly available CUDA kernels
• C++ AMP: Microsoft C++ AMP Sample Projects [27],

20 publicly available kernels, translated to CUDA
• Basemark: Rightware Basemark CL v1.1 [34], 52 com-

mercial OpenCL kernels, provided to us under academic
license

To our knowledge, this benchmark set makes our evalua-
tion significantly larger, in terms of number of kernels ana-
lyzed, than any previously reported evaluation of a tool for
GPU kernel analysis.

We consider the somewhat out-of-date v2.0 version of the
NVIDIA SDK to facilitate a direct comparison of GPUVer-
ify with PUG [21], the only existing verifier for CUDA ker-
nels, since PUG is not compatible with more recent versions
of the CUDA SDK. For this reason, we restrict our attention
to the benchmarks from this SDK which were used to eval-
uate PUG in [21]. Because GPUVerify cannot directly anal-
yse C++ AMP code, we retrieved the set of C++ AMP sam-
ples available online [27] on 3 February 2011, and manually
extracted and translated the GPU kernel functions into cor-
responding CUDA kernels. This mechanical extraction and
translation was straightforward.

We scanned each benchmark suite and removed kernels
which are immediately beyond the scope of GPUVerify,
either because they use atomic operations (7 kernels) or
because they involve writes to the shared state using double-
indirection as discussed in Section 4.2 (12 kernels). We
plan to investigate supporting atomic operations, and design
richer shared state abstractions to handle double-indirection,
in future work.

Experiments are performed on a PC with a 3.4GHz Intel
Core i7-2600 CPU, 8GB RAM running Windows 7 (64-
bit), using revision 2490 of Boogie, and Z3 v3.3. All times
reported are averages over 3 runs.



GPUVerify, together with all our non-commercial bench-
mark kernels, are available from our web page.5

5.1 Evaluation of GPUVerify

Methodology. The practical utility of GPUVerify for prov-
ing correctness of GPU kernels depends largely on the ef-
fectiveness of the tool’s invariant inference technique. In-
variant inference must be precise enough to allow automatic
verification of typical kernels, and semi-automatic verifica-
tion of especially intricate kernels. Inference must not com-
promise efficient analysis: whether verification succeeds or
fails (in the latter case due to the kernel being incorrect, or
the inferred invariants being too weak), the runtime associ-
ated with verification should be as low as possible. Ideally,
GPUVerify should be suitably efficient that it can run as a
background process in an IDE such as Eclipse, to provide
immediate feedback to GPU kernel developers.

We have used the following methodology to design and
evaluate our invariant inference technique. We divided our
benchmarks into two similarly-sized sets: a training set and
an evaluation set, such that details of the evaluation set were
previously unknown to all members of our team. We chose
the CUDA SDK, C++ AMP and Basemark benchmarks as
the training set (92 kernels) and the AMD SDK benchmarks
as the evaluation set (71): members of our team had looked
previously at the CUDA SDK and C++ AMP benchmarks,
but not at the AMD SDK or Basemark benchmarks; how-
ever, we wanted to make the evaluation set publicly avail-
able, ruling out Basemark.

We manually analysed all benchmarks in the training
set, determining invariants sufficient for proving race- and
divergence-freedom. We then distinguished between “be-
spoke” invariants: complex, kernel-specific invariants re-
quired by individual benchmarks; and “general” invariants,
conforming to an identifiable pattern that cropped up across
multiple benchmarks. The general invariants led us to devise
the invariant inference heuristics described in Section 4.3.
We implemented these heuristics in GPUVerify and tuned
GPUVerify to maximise performance on the training set.

We then applied GPUVerify blindly to the evaluation set.
We report below the extent to which our inference technique
enabled fully automatic analysis of the AMD SDK kernels.

We believe that this approach of applying GPUVerify
unassisted to a large, unknown set of benchmarks provides a
fair evaluation of the tool’s automatic capabilities.
Characteristics of the training and evaluation sets. Fig-
ure 11 provides an overview of the sizes of benchmarks in
the training and evaluation sets. We indicate the number of
effective lines of code (ELOC) (this excludes comments and
whitespace, and counts a statement spanning multiple lines
as a single effective line), number of procedures and number
of loops. The largest kernels we analysed consist of 100 and

5 http://multicore.doc.ic.ac.uk/GPUVerify

ELOC ≤30 31-60 61-120 121-180 max=576
Training 78 13 1 0 0
Evaluation 49 10 6 5 1
#procs 1 2-3 4-5 6-7 max=8
Training 69 18 2 3 0
Evaluation 55 10 5 0 1
#loops 0 1 2 3 4-5
Training 44 24 19 2 3
Evaluation 21 27 20 0 3

Figure 11: Summary of size, in terms of ELOC, number
of procedures and number of loops, of benchmarks in the
training and evaluation sets
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Figure 12: Cumulative histogram showing the time taken for
successful verification with GPUVerify for the training set

576 ELOC for the training and evaluation sets, respectively.
The size and complexity of our benchmark kernels are rep-
resentative of GPU kernels in practical use.

In all experiments, we run GPUVerify using a timeout of
five minutes per benchmark. Full inlining of procedures is
used, as discussed in Section 4.3.
Results for the training set. Figure 12 is a cumulative his-
togram showing the performance of GPUVerify with respect
to the training set. The x-axis plots time (in seconds, on a
log scale), and the y-axis plots number of kernels. A point at
position (x, y) indicates that for y of the kernels, verification
took x seconds or fewer. The results show that GPUVerify is
capable of rapidly analysing the vast majority of the training
set kernels: 85 out of 92 were verified in 10 seconds or fewer.
The longest verification time was 105 seconds; this is for a
CUDA PrefixSum kernel which contains a complex bespoke
invariant. In no cases did verification time out.

Running GPUVerify with race checking disabled, the tool
was able to prove barrier divergence freedom for all training
benchmarks, in under 10 seconds per kernel.
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Figure 13: Cumulative histogram showing the times for suc-
cessful and unsuccessful verification with GPUVerify for the
evaluation set.

We had to add invariants manually to a number of the
training set benchmarks to enable verification. In two cases
these were bespoke invariants, as mentioned above. In the
remaining cases we had to add a general sort of relational
invariant commonly required for kernels that perform tree
reductions. Tree reductions are often written in the following
form (where SZ denotes group size and is assumed to be a
power of two):
int offset = 1;
for (int d = SZ; d > 0; d >>= 1) {
barrier();
offset *= 2;
if (lid < d) {

// Write to shared array using function of ’offset’ and ’lid’
}

}

In this case, invariants asserting that offset and d are in-
dividually powers of two, as in the final rule discussed in
Section 4.3, do not suffice. A relational invariant between
offset and d is also required:
(d==SZ && offset==1 ) || (d==SZ/2 && offset==2) || ... ||
(d==1 && offset==SZ) || (d== 0 && offset==2*SZ))

We have not yet devised a general-purpose heuristic for
inferring this sort of relational invariant.
Results for the evaluation set. Figure 13 summarises anal-
ysis times for GPUVerify applied to the evaluation set. This
plot shows three cumulative histograms. The cumulative his-
togram whose points are crosses relates to benchmarks for
which verification succeeded: a cross with coordinates (x, y)
indicates that for y kernels, verification succeeded in x sec-
onds or fewer. The cumulative histogram whose points are
circles relates to benchmarks for which verification failed,
either due to the kernel being incorrect, or due to invariant
inference being too weak. A circle with coordinates (x, y)
indicates that for y kernels, verification failed in x seconds
or fewer. Finally, the cumulative histogram whose points are

squares relates to benchmarks in either of the previous two
categories. This indicates the responsiveness of GPUVerify:
a square at (x, y) indicates that for y benchmarks, GPUVer-
ify terminated, reporting either success or failure, within x
seconds. Thus the y coordinate of each square is the sum of
the y coordinates of the associated cross and circle: if ver-
ification succeeded and failed in x seconds or fewer for ys
and yf kernels, respectively, then verification terminated in
x seconds or fewer for ys + yf kernels.

Using the inference techniques devised with respect to the
training set (c.f. Section 4.3), GPUVerify was able to verify
49 out of the 71 evaluation set kernels (69 %) fully automat-
ically. Of these kernels, 48 were verified in 10 seconds or
fewer, and the longest verification time was 17 seconds. As
for the training set, with race checking disabled, GPUVerify
was able to prove divergence freedom fully automatically for
all evaluation benchmarks, in under 10 seconds per kernel.

Many modern static analysis tools achieve low false
alarm rates via a careful mixture of deliberately introduced
unsoundness in the analysis and ad hoc warning suppression.
GPUVerify does not follow this approach: the tool attempts
to be a “real” verifier, and thus will report verification fail-
ure for a kernel unless it was possible to construct a proof
of correctness in a sound manner, under bit-level accuracy.
With this in mind, we believe that being able to verify 49 out
of 71 evaluation kernels is a good result.

The results also show that, with one exception, the re-
sponse time of GPUVerify, whether or not verification suc-
ceeds, is reasonable. The top cumulative histogram shows
that verification terminated within 10 seconds for 68 of the
kernels, and the response time for 70 out of the 71 kernels
was less than 59 seconds. We believe that response time is
critically important for practical uptake of the tool. Given
that GPUVerify will frequently be applied to incorrect ker-
nels, and accepting that invariant inference cannot be per-
fect, it is encouraging that GPUVerify’s runtime is relatively
impervious to whether verification succeeds or fails. Verifi-
cation of one kernel timed out: this is a loop-free FFT im-
plementation consisting of 576 ELOC. After translation to
Boogie, reduction to a sequential program and full proce-
dure inlining, the resulting Boogie program is almost 10,000
lines, resulting in a huge verification condition. Our current
inference rules for procedure contracts were not sufficient to
enable modular verification of this kernel.

Over all kernels that were successfully verified, 81 % of
the candidate invariants speculated by GPUVerify proved to
be true. This relatively high percentage indicates that our
invariant generation rules (Section 4.3) are usually firing in
cases where generated candidates turn out to be useful.

In addition to the FFT example, we have manually in-
spected the other 21 kernels for which GPUVerify reported
verification failure. Figure 14 summarises 13 cases where
verification would succeed with more sophisticated invari-
ant inference. A further kernel verifies with a complex be-



Reason for verification failure Solution
Slight variations of the access patterns
recognised by our current inference
rules are used (7 kernels)

Generalise existing
inference rules

Access patterns should be recognised
by our inference rules, but rules do not
fire because components of an integer
vector, rather than integer variables, are
used for indexing (3 kernels)

Enhance existing
inference rules
to be sensitive to
vector components

Kernel employs tree reduction in the
form described above, and verifies with
corresponding relational invariant (3
kernels)

Design inference
rules for tree
reduction invariants

Figure 14: Common causes of verification failure for evalu-
ation set kernels, and planned improvements to inference

spoke invariant, which does not appear to conform to a gen-
eral pattern. Verification of five kernels failed due to missing
preconditions on kernel parameters. One example is a kernel
whose race freedom depends upon the identity a + b ≥ a,
where a and b are positive values read from the shared state.
If a and b are sufficiently large then, with 32-bit integers,
this identity does not hold. Without a precondition stating
that the contents of the shared state are suitably bounded,
GPUVerify reports a data race. We believe that GPUVerify
can be a useful as a tool to help GPU kernel programmers
explicitly understand and state the preconditions their ker-
nels assume. For one kernel GPUVerify reports a read-write
race which we discovered to be benign: the writing thread is
guaranteed to write the same value which the reading thread
is about to read. Finally, we encountered one false positive
arising from an array index being derived from floating point
input data.
Detection of a bug in previous CUDA SDK example. Us-
ing GPUVerify we discovered a write-write data race in the
N -body example that shipped with the CUDA SDK v2.3.
This example uses multiple CUDA kernels to numerically
approximate a system of N interacting bodies [33]. This
is an ideal problem for parallelisation since interactions be-
tween each pair of bodies can be calculated independently.
The CUDA implementation of this example decomposes the
N2 pair-interactions into smaller k × k tiles, each of which
is assigned to a one-dimensional group of k threads. Within
each group, every thread is assigned to a distinct body (a row
of the tile) and sequentially considers the interactions associ-
ated with this body to compute an updated state for the body.
The kernel implements an optimisation for small values of
N where threads are arranged in two-dimensional groups,
and multiple threads within a group are assigned to the same
body. Consequently, the interactions calculated by threads
assigned to the same body must be summed. A barrier en-
sures that each thread has completed its sub-calculation, and
then a conditional is used to ensure that a single “master”

thread performs the summation. However, a data race could
occur because a similar condition was not in place to ensure
that only this master thread would perform a final update
to the position and velocity of the body. As a result, it was
possible for the master thread’s final update, using the full
summation, to be overwritten by partial results computed by
other threads.

We reported this data race to Lars Nyland at NVIDIA
who confirmed that “It was a real bug, and it caused real
issues in the results. It took significant debugging time to
find the problem.” [32]. NVIDIA had subsequently fixed this
bug in v3.0 of the CUDA SDK.

5.2 Comparison of GPUVerify with PUG
We present a head-to-head comparison of PUG and GPU-
Verify on our CUDA benchmarks: the CUDA SDK and C++
AMP suites (40 kernels). Recall that we removed kernels
from these suites which use atomic operations or write to
the shared state using double-indirection: PUG is also in-
capable of reasoning about these features. The CUDA SDK
benchmarks were previously used to evaluate PUG [21]. The
C++ AMP benchmark suite consists of kernels we translated
manually from C++ AMP to CUDA, which we then adapted
to allow for documented limitations of PUG’s front-end. We
made a special effort not to modify these kernels in any way
which would make them easier for GPUVerify to handle.

Both GPUVerify and PUG represent integers using bit-
vectors. GPUVerify always uses 32 bits for variables of int
type, as this is required by both CUDA and OpenCL. PUG
allows the user to specify which bit width should be used for
integers. In the evaluation of [21], custom bit widths were
chosen on a benchmark-by-benchmark basis. To make the
current comparison fair, we always run PUG in 32-bit mode:
we believe that this is essential for verification purposes as
smaller bit widths can change the semantics of kernels under
analysis.

For all experiments, we use a five minute timeout for both
PUG and GPUVerify.
Results for correct benchmarks. We found that PUG re-
ported false positive for three kernels. These are kernels
whose correctness depends upon threads agreeing on the
contents of the shared state. GPUVerify is able to reason
about these kernels using the equality abstraction (Sec-
tion 4.2). PUG’s shared state abstraction is equivalent to
our adversarial abstraction, which is not sufficient for these
kernels. Note that GPUVerify decides automatically which
shared state abstraction to use.

Figure 15 compares the performance of GPUVerify and
PUG on the 37 kernels that both tools could handle. A point
with coordinates (x, y) corresponds to a kernel which took
x and y seconds to be verified by GPUVerify and PUG
respectively. Points lying above/below the diagonal corre-
spond to kernels where GPUVerify performed better/worse
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Figure 15: Scatter plot comparing the performance of GPU-
Verify and PUG on the CUDA SDK and C++ AMP kernels

than PUG. Points at the very top of the graph correspond to
kernels for which PUG timed out. The axes use a log scale.

The plot shows that PUG is on average faster than GPU-
Verify, but that PUG’s worst-case performance is signifi-
cantly worse than GPUVerify’s: the timeout of 5 minutes is
reached by PUG for six kernels, but never reached by GPU-
Verify. We also find that PUG runs extremely quickly, taking
only a tiny fraction of a second, for six kernels. We con-
jecture that in these cases PUG may be able to infer race
freedom though cheap syntactic checks, without invoking its
constraint solver.
Results for buggy benchmarks. We have also compared
GPUVerify and PUG to see how quickly they report proof
failures when applied to buggy kernels. We randomly in-
jected a mutation into each kernel in the CUDA SDK and
C++ AMP benchmark suites. First, we used a script to
choose, for each kernel, a random mutation and a random
location within the kernel to apply the mutation. These mu-
tations were chosen to elicit either a data race (for example,
removing a barrier or adding a racy access) or barrier diver-
gence (for example, adding a barrier where control flow is
non-uniform). The script places its suggestions as comments
within each kernel. Secondly, we took each kernel and ex-
amined the suggested mutation. If it was sensibly placed and
would give rise to buggy behaviour we implement the mu-
tation by hand; otherwise, we reran the script to generate
a fresh mutation suggestion, repeating the process until a
suitable mutation was generated.

We found that GPUVerify’s proof attempts generally
failed within around 5 seconds, whereas PUG’s proof at-
tempt failed usually within half a second: an order of mag-
nitude faster. However, for seven buggy kernels we found
that PUG reported false negatives: wrongly reporting cor-

rectness of the kernel. Of these false negatives, one mutation
was an injected barrier divergence while the remaining six
were data races. GPUVerify reported no false negatives.

6. Related work
There are numerous existing dynamic and static techniques
for data-race detection in programs using lock-based syn-
chronization or fork-join parallelism; a full discussion of
these techniques is beyond the scope of this paper. We note
however that this paper is concerned with proving race-
and divergence-freedom in data-parallel programs in which
the primary challenges—barrier synchronization and dis-
joint access patterns based on clever array indexing—are
different from those encountered in lock-based and fork-join
programs. In the rest of this section, we discuss papers that
explicitly handle data-parallel or GPU programs. We con-
clude the section with a brief discussion of invariant genera-
tion techniques.
PUG. The closest work to GPUVerify is the PUG an-
alyzer for CUDA kernels [21]. Although GPUVerify and
PUG have similar goal, scalable verification of GPU ker-
nels, the internal architecture of the two systems is very
different. GPUVerify first translates a kernel into a sequen-
tial Boogie program that models the lock-step execution of
two threads; the correctness of this program implies race-
and divergence-freedom of the original kernel. Next, it in-
fers and uses invariants to prove the correctness of this se-
quential program. Therefore, we only need to argue sound-
ness for the translation into a sequential program; the sound-
ness of the verification of the sequential program follows di-
rectly from the soundness of contract-based verification. On
the other hand, PUG performs invariant inference simulta-
neously with translation of the GPU kernel into a logical
formula. PUG provides a set of built-in loop summarisa-
tion rules which replace loops exhibiting certain shared array
access patterns with corresponding invariants. Unlike GPU-
Verify, which must prove or discard all invariants that it gen-
erates, the loop invariants inserted by PUG are assumed to
be correct. While this approach works for simple loop pat-
terns, it has difficulty scaling to general nested loops in a
sound way resulting in various restrictions on the input pro-
gram required by PUG. In contrast, GPUVerify inherits flex-
ible and sound invariant inference from Houdini regardless
of the complexity of the control structure of the GPU kernel.
Formal semantics for GPU kernels. A recent paper study-
ing the relationship between the lock-step execution model
of GPUs and the standard interleaved semantics for threaded
programs presents a formal semantics for predicated execu-
tion [14]. This semantics shares similarities with the SDV
semantics we present in Section 3, but the focus of [14] is
not on verification of GPU kernels.
Symbolic execution and bounded-depth verification. The
GKLEE [23] and KLEE-CL [6] tools perform dynamic sym-



bolic execution of CUDA and OpenCL kernels, respectively,
and are both built on top of the KLEE symbolic execution
engine [5]. A method for bounded verification of barrier-
free GPU kernels via depth-limited unrolling to an SMT
formula is presented in [38]; lack of support for barriers,
present in most non-trivial GPU kernels, limits the scope
of this method. Symbolic execution and bounded unrolling
techniques can be useful for bug-finding—both GKLEE
and KLEE-CL have uncovered data race bugs in real-world
examples—and these techniques have the advantage of gen-
erating concrete bug-inducing tests. A further advantage of
GKLEE and KLEE-CL is that because they are based on
KLEE, which works on LLVM bytecode, they can be ap-
plied to GPU kernels after optimization and thus have the
potential to detect bugs that result from incorrect compiler
optimizations. The major drawback to these methods is that
they cannot verify freedom of defects for non-trivial kernels.

The GKLEE tool specifically targets CUDA kernels,
and faithfully models lock-step execution of sub-groups of
threads, or warps as they are referred to in CUDA (see Fig-
ure 2). This allows precise checking of CUDA kernels that
deliberately exploit the warp size of an NVIDIA GPU to
achieve high performance. In contrast, GPUVerify makes
no assumptions about sub-group size, making it useful for
checking whether CUDA kernels are portable, but incapable
of verifying kernels whose correctness depends on implicit
warp-level synchronization.

Both GKLEE and KLEE-CL explicitly represent the
number of threads executing a GPU kernel. This allows for
precise defect checking, but limits scalability. A recent ex-
tension to GKLEE uses the notion of parametric flows to
soundly restrict defect checking to consider only certain
pairs of threads [22]. This is similar to the two-thread ab-
straction employed by GPUVerify and PUG, and leads to
scalability improvements over standard GKLEE, at the ex-
pense of a loss in precision for kernels that exhibit inter-
thread communication.
Dynamic analysis. Dynamic analysis of CUDA kernels
for data race detection has been proposed [4]. A recent pa-
per [20] reports a technique that combines dynamic and
static data race analysis: a CUDA kernel is simulated with
dynamic race checking. If no races are detected, flow analy-
sis is used to determine whether the control-flow taken dur-
ing dynamic execution was dependent on input data; if not,
the kernel can be deemed race free, otherwise the technique
is inconclusive. It appears that this approach can handle ker-
nels that are verifiable using our adversarial abstraction.
Kernels which GPUVerify can verify only with the equal-
ity abstraction, due to threads testing input data, are not be
amenable to analysis using the technique of [20].
Other approaches. A recent approach to construction of
correct parallel programs is based on thread contracts [16].
A programmer specifies the coordination and data sharing
strategy for their multi-threaded program as a contract, ade-

quacy of the specification for ensuring race-freedom is then
checked statically, while adherence to the specification by
the implementation is ascertained via testing. Adapted to
the setting of barrier synchronization rather than lock-based
coordination, this technique might enable analysis of more
complex GPU kernels for which automatic contract infer-
ence is infeasible.
Invariant generation. As described in Section 4.3, we use
the Houdini algorithm [12] to generate loop invariants for
verification. Houdini was introduced as an annotation as-
sistant for the Java Extended Static Checker [19]. Related
template-based invariant generation techniques include [15,
18, 35]. As discussed in the related work section of [12],
Houdini can be viewed under the framework of abstract in-
terpretation [7] where the abstract domain is conjunctions of
predicates drawn from the set of candidate invariants. Com-
pared with standard predicate abstraction [13], which con-
siders arbitrary boolean combinations of predicates (and is
thus more precise), verification using Houdini requires a lin-
ear instead of exponential number of theorem prover calls.
In our context, the key advantage of the Houdini approach
over traditional abstract interpretation using a fixed abstract
domain is flexibility. We can easily extend GPUVerify with a
richer language of predicates by adding further candidate in-
variant generation rules; there is no need for careful redesign
of an abstract domain.

The main problem with our invariant generation method
is that its success is limited by the scope of our candidate in-
variant generation rules. Interpolation and counterexample-
guided abstraction refinement can be used incrementally
generate invariants in response to failed or partial verifi-
cation attempts [3, 26], while the Daikon technique [11]
allows program-specific invariants to be speculated through
dynamic analysis. We plan to draw upon these techniques to
improve GPUVerify’s invariant inference in future work.

7. Conclusions
We have provided an operational semantics for GPU kernels,
and used this semantics to design a novel technique for for-
mal verification of race- and divergence-freedom. Through a
large experimental evaluation we have demonstrated that our
implementation of this technique, GPUVerify, is effective
in verifying and falsifying real-world OpenCL and CUDA
GPU kernels.

Future work will involve extending the reach of GPU-
Verify by supporting atomic operations, investigating more
sophisticated strategies for inferring loop invariants and pro-
cedure specifications, and devising richer shared state ab-
stractions.
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sis of DMA races using model checking and k-induction. For-
mal Methods in System Design 39(1):83-113.

[11] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.
Pacheco, M. S. Tschantz, and C. Xiao The Daikon system for
dynamic detection of likely invariants. Sci. Comput. Program.
69(1-3):35-45.

[12] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. In FME, 2001.

[13] S. Graf and H. Sa idi. Construction of abstract state graphs
with PVS. In CAV, 1997.

[14] A. Habermaier and A. Knapp. On the correctness of the SIMT
execution model of GPUs. In ESOP, 2012.

[15] T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-based invariant
discovery. In NFM, 2011.

[16] R. K. Karmani, P. Madhusudan, and B. Moore. Thread con-
tracts for safe parallelism. In PPOPP, 2011.

[17] Khronos OpenCL Working Group. The OpenCL specifica-
tion, version 1.1, 2011. Document Revision: 44.

[18] S. K. Lahiri and S. Qadeer. Complexity and algorithms for
monomial and clausal predicate. In CADE, 2009.

[19] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s
manual. Technical Note 2000-002, Compaq Systems Re-
search Center, October 2000.

[20] A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and
S. Lerner. Verifying GPU kernels by test amplification. In
PLDI, 2012.

[21] G. Li and G. Gopalakrishnan. Scalable SMT-based verifica-
tion of GPU kernel functions. In FSE, 2010.

[22] G. Li, P. Li, G. Gopalakrishnan. Parametric flows: automated
behaviour equivalencing for symbolic analysis of races in
CUDA programs. In SC, 2012.

[23] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and
S. P. Rajan. GKLEE: concolic verification and test generation
for GPUs. In PPOPP, 2012.

[24] llvm.org. clang: a C language family frontend for LLVM.
clang.llvm.org

[25] A. Lokhmotov. Mobile and embedded computing on Mali
GPUs. In UK GPU Computing Conference, 2011.

[26] K. L. McMillan. Lazy abstraction with interpolants. In CAV,
2006.

[27] Microsoft Corporation. C++ AMP sample projects for down-
load (MSDN blog).
blogs.msdn.com/b/nativeconcurrency/archive/2012/01/

30/c-amp-sample-projects-for-download.aspx

[28] D. Moth and Y. Levanoni. Microsoft’s C++ AMP unveiled.
www.drdobbs.com/windows/231600761

[29] NVIDIA. CUDA Toolkit Release Archive.
developer.nvidia.com/cuda-toolkit-archive

[30] NVIDIA. CUDA C programming guide, v4.0, 2011.

[31] NVIDIA. PTX: Parallel thread execution ISA, v2.3, 2011.

[32] L. Nyland. Personal communication, April 2012.

[33] L. Nyland, M. Harris, and J. Prins. Fast N-body simulation
with CUDA. GPU Gems 3, Chapter 31. Addison-Wesley,
2007.

[34] Rightware Oy. Basemark CL. www.rightware.com/en/
Benchmarking+Software/Basemark%99+CL

[35] S. Srivastava and S. Gulwani. Program verification using
templates over predicate abstraction. In PLDI, 2009.

[36] B. Steensgaard. Points-to analysis in almost linear time. In
POPL, 1996.

[37] S. Stone, J. Haldar, S. Tsao, W. Hwu, B. Sutton, and Z. Liang.
Accelerating advanced MRI reconstructions on GPUs. J.
Parallel Distrib. Comput., 68(10):1307–1318, 2008.

[38] S. Tripakis, C. Stergiou, and R. Lublinerman. Checking non-
interference in SPMD programs. In HotPar, 2010.


