
Formally Verifying FreeRTOS’
Interprocess Communication Mechanism
Nathan Chong

Amazon Web Services
Bart Jacobs

imec-DistriNet, KU Leuven

ABSTRACT
FreeRTOS is a real-time kernel and set of libraries for Internet of
Things (IoT) applications. The FreeRTOS kernel provides a portable
abstraction layer, task scheduling and interprocess communication
(IPC) mechanisms. The main IPC mechanism in FreeRTOS is a
concurrent queue: a circular bu!er data structure that tasks and
interrupt service routines use to exchange messages. As a funda-
mental building block for larger applications, the correctness of
the queue implementation is vital. We have formally veri"ed the
memory safety, thread safety and functional correctness of this
queue implementation using deductive veri"cation. Our proofs
are publicly available and give machine-checkable assurances of
correctness that would be infeasible to obtain through testing alone.

1 INTRODUCTION
FreeRTOS is a market-leading real-time kernel and set of IoT li-
braries that enables developers to easily and securely build, deploy
and manage IoT applications. The breadth and reach of FreeRTOS
applications across multiple industry sectors means that security
and correctness are of prime importance.

The reliability of FreeRTOS is ensured through continual invest-
ment in security and software quality. This includes strict MISRA
coding standards, linting and static checking, code coverage, code
reviews, testing in continuous integration and extensive device
platform stress testing.1

Increasingly for FreeRTOS, this also includes the complementary
use of formal veri!cation techniques, which enable even higher
assurances of correctness through machine-checkable proofs. A
key bene"t of these techniques is the potential to achieve levels of
assurance that we could not obtain through testing.

In the context of formal veri"cation, a proof shows that a pro-
gram behaves correctly with respect to a logical speci"cation. Logi-
cal speci"cations capture the intent of the developer more precisely
than documentation because proofs can link these speci"cations to
the implementation of the program. In particular, formal veri"ca-
tion techniques allow us to reason rigorously about all of a code’s
behaviors: what it can do, what it must do and, just as importantly,
what it can never do. Advances in underlying techniques and tools
have made formal veri"cation of software more tractable and aca-
demic research continues to push the boundary in many exciting
directions including veri"ed compilers, operating systems and dis-
tributed systems [19]. However, formal veri"cation of software in
industry is not mainstream due to the costs of proof engineering:
the practice of developing and maintaining proofs. A principled ap-
proach is to apply formal veri"cation to components of a codebase
that merit the costs and bene"ts.
1"It is worth noting that the thoroughness of these [FreeRTOS] tests have been re-
sponsible for "nding bugs in silicon on multiple occasions", https://www.freertos.org/
FreeRTOS-Coding-Standard-and-Style-Guide.html

One such component in the FreeRTOS kernel is the concurrent
queue implementation for interprocess communication (IPC). Due
to preemptive scheduling, the queue must be correct in the presence
of multiple tasks concurrently calling queue API operations. For
example, consider two tasks that concurrently attempt to send two
separate messages to the queue. It is imperative that the integrity
of each message be maintained by ensuring that the queue is up-
dated consistently regardless of the state of the queue and in the
presence of other tasks. Careful design and thorough testing gives
assurance that this is the case, but formal veri"cation can provide
higher assurance by considering all such scenarios, particularly
subtle concurrent scenarios that would be di#cult or burdensome
to trigger reliably through testing.

We have veri"ed the FreeRTOS queue implementation in the
presence of this concurrent behavior. Informally, the proofs show
that the FreeRTOS queue implementation is memory safe (i.e., does
not access invalid memory or dereference NULL pointers), thread
safe (i.e., properly synchronizes accesses to shared memory to avoid
data races) and functionally correct (i.e., behaves like a queue).
Furthermore, these properties hold regardless of the number of tasks
accessing the queue or the thread schedule. Our proofs are publicly
available and run as part of FreeRTOS continuous integration since
V10.4.3, in order to help ensure their continued maintenance.2

The veri"cation was performed using the VeriFast deductive
veri"er [14], taking three person months to develop proofs for 14
API functions and 6 internal functions (approximately 700 lines of
code) of the queue implementation. The veri"cation time for all
proofs takes less than 5 seconds on a commodity laptop.3 Table 1
gives a per-function breakdown of the proof annotation overhead,
which ranges between 0.3–2×. Proof annotations are statements
added to the code to aid veri"cation and we give an example of a
function with proof annotations in §4. We note that the landscape
of formal veri"cation is broad and there are more automated tech-
niques such as model checking [6, Chapter 2] that do not require
proof annotations. Indeed, Amazon has successfully applied model
checking to FreeRTOS4 and other low-level C-based systems [5, 8],
however, these techniques do not typically scale to reasoning about
concurrent code. The contributions of this work are:

• Formal veri"cation of the FreeRTOS concurrent queue im-
plementation, the main IPC mechanism of FreeRTOS (§4)

• Four "ndings in the queue implementation that have been
reported to and addressed by the FreeRTOS developers (§5)

2https://github.com/FreeRTOS/FreeRTOS/tree/master/FreeRTOS/Test/VeriFast
3Intel 2.5GHz i7, 16GB RAM MacBook Pro with VeriFast 19.12
4https://www.freertos.org/2020/02/ensuring-the-memory-safety-of-freertos-part-1.
html

���

Nathan Chong and Bart Jacobs

Table 1: Per-function proof LOA (lines of annotation) to ver-
ify LOC (lines of code) of the concurrent queue implemen-
tation of FreeRTOS

LOC LOA Annotation
Overhead

API functions:
uxQueueMessagesWaiting 9 4 44%
uxQueueMessagesWaitingFromISR 9 2 22%
uxQueueSpacesAvailable 13 5 38%
vQueueDelete 26 8 31%
xQueueGenericCreate 62 21 34%
xQueueGenericReset 33 17 52%
xQueueGenericSend 93 29 31%
xQueueGenericSendFromISR 74 22 30%
xQueueIsQueueEmptyFromISR 14 3 21%
xQueueIsQueueFullFromISR 14 3 21%
xQueuePeek 76 22 29%
xQueuePeekFromISR 28 8 29%
xQueueReceive 74 28 38%
xQueueReceiveFromISR 42 14 33%
Internal functions:
prvCopyDataFromQueue 18 31 172%
prvCopyDataToQueue 46 52 113%
prvIsQueueEmpty 12 4 33%
prvIsQueueFull 12 4 33%
prvLockQueue 18 8 44%
prvUnlockQueue 51 10 20%
Shared proofs:
15 de"nitions and 42 lemmas 671
Total 724 966 133%

1.1 Proof Assumptions
As is the case for all veri"ed software, our proofs are subject to
assumptions which must be carefully reviewed to ensure they are
reasonable. Generally our proofs assume well-behaved applications,
the correctness of underlying primitives and system behavior.

• The speci"cation is a contract: if the application adheres
to the queue API speci"cation then in return the proofs
guarantee correctness properties. Proofs show that an imple-
mentation is valid with respect to its speci"cation. Hence, a
badly-behaved application can invalidate our proofs if the
speci"cation requirements are not followed. For example, an
application that reads or writes to the queue storage directly,
without using the queue API, invalidates thread safety. The
speci"cation forbids this behavior but we cannot, in general,
enforce this behavior since we do not verify application code.

• We assume the memory safety, thread safety and functional
correctness for primitives used by the queue implementation
for memory allocation and task scheduling.5 We provide a
speci"cation for each primitive but we do not verify their
implementation. We note that in some cases there is no

5Speci"cally: pvPortMalloc, vPortFree, memcpy, vListInitialise,
xTaskRemoveFromEventList, vTaskMissedYield, xTaskCheckForTimeOut,
vTaskInternalSetTimeOutState and vTaskPlaceOnEventList

single implementation—they are an application-level choice
or specialized by each device platform.

• We assume a system property regarding the isolation guar-
anteed between tasks and interrupt service routines (ISRs).
Speci"cally, we assume that themacro taskENTER_CRITICAL
and its equivalent for ISRs, which FreeRTOS implements on
a per-platform basis as interrupt masking gives strong isola-
tion [3]. An informal example of strong isolation is:

Initially x == 0

// Task 1
taskENTER_CRITICAL()
x = 1;
x = 2;
taskEXIT_CRITICAL()

// Task 2
r = x;

Assert r == 0 or r == 1

That is, strong isolation of Task 1’s critical section means
Task 2 must never see the intermediate state x == 1. We dis-
cuss this assumption further in Section 3.2 when we describe
the concurrency mechanisms used by the queue.

Regarding the trusted computing base of our proofs: we rely on
VeriFast, the C Compiler and the underlying hardware. Issues in
any of these components could e!ect the soundness of our proofs.
Regarding VeriFast, a core subset of the underlying technique has
been formalized [21], which increases our con"dence in the tool.
Trusting the C compiler and underlying hardware is necessary be-
cause our proofs are performed at the level of the C implementation
code.

2 RELATEDWORK
FreeRTOS has been the subject of several formal veri"cation ef-
forts [4, 5, 9–11, 15, 18, 20]. Cheng et al. give a good overview of
these e!orts up to 2015. These can broadly be divided into two types:
speci"cation-level and implementation-level. At the speci"cation-
level, the functionality of portions of FreeRTOS are modeled in
an abstract speci"cation language such as B method [9] or Z no-
tation [4]. At the implementation-level, the code of FreeRTOS is
analyzed more directly [5, 11, 15, 20]. The work of Divakaran et al.
bridges these two styles and presents a proof linking an abstract
speci"cation in Z notation to the implementation-level code of the
FreeRTOS task scheduler using the VCC deductive veri"er [7].

The work of Ferreira et al. is most closely related to ours. Similar
to us, they use deductive veri"cation based on separation logic (§3.3)
to reason about the FreeRTOS task scheduler and its underlying
list data structure. The annotation overhead reported by their work
(ranging between 0.13–2× [11, Table 1]) compares similarly to ours
(Table 1). However, their work relies on a hand-translation of C
code into an intermediate imperative language, whereas we reason
directly on the source. Our work di!ers from prior implementation-
level veri"cation e!orts in two main ways. Firstly, we verify concur-
rent code whereas prior e!orts have focused on sequential proofs
or assumed atomicity at the API-level. Secondly, the proofs in this
paper are maintained in-sync with FreeRTOS development by being

���

Formally Verifying FreeRTOS’ Interprocess Communication Mechanism

part of continuous integration. This is also the case for the model
checking proofs discussed by Chong et al..

3 BACKGROUND
We brie3y overview the execution model of FreeRTOS before mov-
ing onto the queue: its layout, sequential behavior and concurrent
behavior. These topics are also covered in the FreeRTOS documen-
tation [1, 2].

3.1 FreeRTOS Execution Model
An application using FreeRTOS is partitioned into tasks and inter-
rupt service routines (ISRs). A task is a thread of computation with
its own stack under the control of the FreeRTOS task scheduler.
An ISR is a procedure registered to an interrupt. ISRs are run in an
event-driven manner under the control of the interrupt controller
(e.g., the NVIC on Arm Cortex-M systems). Every task has a priority.
Higher-priority tasks can preempt lower-priority tasks when the
task scheduler is con"gured to use preemptive scheduling. Inter-
rupts always preempt tasks and nest if a higher-priority interrupt
occurs. Tasks can never preempt ISRs. Every FreeRTOS application
contains a lowest-priority idle task and context-switching ISR.

3.2 FreeRTOS Queue Implementation
The kernel queue implementation is given in queue.c.6 The "le
is approximately 2K LOC but only 700 LOC is used to implement
the queue. The remainder builds synchronization objects, such as
semaphores and mutexes, out of the queue implementation. Queues
are created and used by an application through a queue API pro-
vided by the kernel. The main API functions are given in Table 1.

Layout. Figure 1 shows the layout of a queue of N elements
of M bytes in memory (i.e., the queue can store at most N "xed-
size messages). In the queue struct, N and M are stored in the
"elds uxLength and uxItemSize. All queues have 0 < N and 0 <
M . The pointers pcHead and pcTail delimit the bu!er: pcHead
(respectively, pcTail) points-to the "rst (respectively, one-byte
after the last byte) of the storage bu!er. These pointers are "xed.
The pointers pcReadFrom and pcWriteTo are the front and back
of K valid elements in the queue. In the queue struct, K is stored
in the "eld uxMessagesWaiting. These pointers can point at any
element boundary in the bu!er with the valid elements circularly
wrapping around if pcWriteTo < pcReadFrom. Initially, at queue
creation and reset, pcReadFrom (respectively, pcWriteTo) points-
to the last (respectively, "rst) element of the bu!er corresponding
to K = 0 valid elements. We view the "elds of the queue struct
and the bu!er itself as resources that a task or ISR can access. The
"gure omits queue resources for task blocking behavior—task wait
lists and queue locks—which we defer to the section on Concurrent
Behavior, below.

Sequential Behavior. A task or ISR with a reference to the queue
can send a message (place an element into the queue) or receive
a message (take an element from the queue) by calling the queue
API. Figure 2 shows the state of a queue with N = 4 elements
after successive send and receive operations, which we assume to
be sequential, starting with the reset state S0. A send operation
6https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/queue.c

copies the message into the element pointed-to by the back of the
queue, pcWriteTo (denoted W), and then increments the pointer by
one element modulo N to account for wraparound behavior (e.g.,
S0 → S1). A receive operation increments the front of the queue,
pcReadFrom (denoted R), by one element modulo N to account for
wraparound behavior and copies the element pointed-to by the new
front of the queue to the result (e.g., S2 → S3). The queue API also
supports sending messages to the front of the queue or overwriting
the contents of an element (in the case when N = 1).

Concurrent Behavior. The queue API supports multiple tasks and
ISRs sending and receiving into the queue at the same time and
allows non-blocking and blocking behavior for tasks. Under non-
blocking behavior, a send (respectively receive) API call returns
with an error if the queue is full (respectively empty). Whereas,
under blocking behavior, the calling task will wait up to a task-
speci"ed timeout for the queue state to change (i.e., the queue
to become not-full in the case of a send or non-empty for a re-
ceive) to enable the call to succeed. If the timeout is reached then
an error is returned. In the queue, blocking behavior is imple-
mented by appending the task control block (TCB) of the calling
task to a task wait list xTasksWaitingToSend for send (respectively
xTasksWaitingToReceive for receive) stored in the queue struct.
ISRs cannot call blocking API queue functions because an interrupt
must never block as this would deadlock the system since context-
switching is performed using a dedicated context-switching ISR.

Since kernel synchronization mechanisms, such as semaphores
and mutexes, are built on top of the queue implementation, the
queue itself must use lower-level mechanisms. The queue imple-
mentation uses three kinds of concurrency control:

• Interrupt masking. FreeRTOS provides macros to mask in-
terrupts which allow the system to ignore interrupts below a
certain priority until the mask is cleared.7 On a uniprocessor
system this mechanism provides strongly isolated critical
sections between tasks and ISRs. A task in such a critical sec-
tion cannot be preempted by interrupts or other tasks (even
higher-priority tasks) since context-switching is performed
by an ISR. Similarly, an ISR in such a critical section cannot
be preempted by interrupts (and tasks can never preempt
interrupts (§3.1)). A task or ISR using this mechanism has
exclusive access to almost all queue resources.

• Scheduler suspension. Suspending the task scheduler dis-
ables context-switching and provides critical sections be-
tween tasks.8 Note that this mechanism does not provide
isolation between tasks and ISRs. In the case of the queue,
there are no task-only resources so this mechanism, by itself,
does not give exclusive access to queue resources.

• Lock variables.Both interruptmasking and task scheduling
suspension are generic mechanisms. Speci"c to the queue im-
plementation are two ‘lock’ variables cTxLock and cRxLock
of type int8_t. The lock cTxLock (respectively, cRxLock)
protects the task wait list xTasksWaitingToReceive (re-
spectively, xTasksWaitingToSend). The value −1 denotes
unlocked and values 0 . . . 127 denote locked; the values

7Tasks use taskENTER_CRITICAL and taskEXIT_CRITICAL and ISRs use
portSET_INTERRUPT_MASK_FROM_ISR and portCLEAR_INTERRUPT_MASK_FROM_ISR
8Using vTaskSuspendAll and vTaskResumeAll

���

Nathan Chong and Bart Jacobs

Figure 1: Queue layout in memory

Figure 2: Sequential behavior of a queue with N = 4. We
use R and W to denote the front and back of the queue (i.e.,
pcReadFrom and pcWriteTo).

−128 . . . − 2 are invalid. A non-zero value i for cTxLock
(respectively, cRxLock) indicates that i ISRs have sent to (re-
spectively, received from) the queue in the interval between
the task locking and unlocking.

The queue implementation uses interrupt masking for atomic
updates to the queue (i.e., copying data to and from the queue),
but scheduler suspension with locking for task blocking behavior
(accessing the task wait lists). Although interrupt masking is suf-
"cient for preserving isolation in all cases, FreeRTOS uses these
two mechanisms in conjunction for performance reasons to avoid
masking interrupts for long periods of time. If a task is in a critical
section with both task scheduling suspended and a lock then it has
exclusive access to the task wait list and can safely add its TCB
into the list to block. A task in such a critical section cannot be
preempted by other tasks due to task scheduler suspension but may
be interrupted. In this case, if the corresponding ISR is in a critical
section with interrupts masked and the lock is held (i.e., by the
interrupted task) then the ISR must not access the task wait list, but
does have exclusive access to all other queue resources; otherwise,
the lock is free and the ISR can safely access the task wait list in
order to wake up any tasks that may now be unblocked. Table 2
summarizes the interaction of these mechanisms with respect to
the queue resources.

Table 2: Summary of ownership of queue resources using
concurrency control mechanisms Irq (interrupt masking),
Sched (scheduler suspension) and Lock (queue locks)

Irq Sched Lock Resource
Task 0 0 0 None

0 0 1 Invalid
0 1 0 None
0 1 1 Wait lists
1 0 0 All excluding wait lists
1 0 1 Invalid
1 1 0 All excluding wait lists
1 1 1 All including wait lists

ISR 0 X X None
1 X 0 All including wait lists
1 X 1 All excluding wait lists

���

Formally Verifying FreeRTOS’ Interprocess Communication Mechanism

3.3 VeriFast
VeriFast is a deductive veri"er for single-threaded andmultithreaded
C and Java [14] and has been applied to a number of interesting
industry case studies including a Linux device driver and an em-
bedded Linux network management component [17]. Proofs are
performed modularly on a per-function basis, each with respect
to a speci"cation: a precondition and postcondition. Informally, a
proof of a function establishes that all executions of the function
starting in a state satisfying the precondition either terminate in a
state satisfying the postcondition or never terminate.9 In VeriFast
the language used to express speci"cations is based on separation
logic [16]: a logic for reasoning about resources and their ownership
(or permission). Resources include both allocated objects in memory
(such as the queue bu!er storage, including its individual elements)
and abstract notions like the ability to mask interrupts. Critically,
for a thread to access a resource it must have the correct permis-
sion (e.g., read-only access or exclusive access) to do so. This is a
key check for ensuring memory safety and thread safety enforced
automatically by VeriFast. Finally, VeriFast supports user-de"ned
de"nitions which allow us to express the expected behavior of the
queue for functional correctness. We illustrate these features by
analyzing a proof in the next section.

4 ANATOMY OF A PROOF
Figure 4 gives a proof for a simpli"ed version of the internal queue
function prvCopyDataToQueue. This function is responsible for
copying data into the queue and must only be invoked when the
calling task or ISR has taken ownership of the queue by masking
interrupts (note the comment on line 10) and the queue has space
for the message. The implementation has three steps: (1) the mes-
sage is copied to the back of the queue (the element pointed-to by
pcWriteTo) (line 20), (2) this pointer is incremented by one element
(line 25) modulo wraparound (lines 27–32) and (3) the number of
messages is incremented (line 42).

The proof is the code of the function with a speci"cation and
proof annotations. The precondition (lines 4–6) and postcondition
(lines 7–8) as well as the proof annotations are written inside spe-
cial comments (/*@ . . . @*/) ignored by compilation but visible to
VeriFast. A high-level reading of this speci"cation is that the func-
tion takes an arbitrary well-formed queue and returns the same
queue with one new element at the back, whose contents is a copy
of pvItemToQueue.

We begin by describing the de"nition of a well-formed queue
(Figure 3) used in both the pre and postcondition. The de"nition
uses N ,M ,W , R andK as we informally used themwhen describing
the sequential operation of the queue (§3.2):

• N is the length of the queue (i.e., the value of the queue
struct "eld uxLength)

• M is the size in bytes of each element (i.e., the value of the
queue struct "eld uxItemSize)

• W is the index of the element pointed-to by the back of the
queue pointer pcWriteTo

9This notion of correctness which ignores non-terminating executions is known as
partial correctness. Checking for termination as well is known as total correctness.
VeriFast supports both notions, but we do not verify termination in the queue proofs.

predicate queue(Queue_t *q, int8_t *Storage,
size_t N, size_t M, size_t W, size_t R, size_t K,
list<list<char> > abs) =
// layout
q->pcHead |-> Storage &*&
q->pcTail |-> Storage + (N*M) &*&
q->uxLength |-> N &*&
q->uxItemSize |-> M &*&
q->pcWriteTo |-> Storage + (W*M) &*&
q->pcReadFrom |-> Storage + (R*M) &*&
q->uxMessagesWaiting |-> K &*&
// invariants
0 < N &*& 0 < M &*&
0 <= W &*& W < N &*&
0 <= R &*& R < N &*&
0 <= K &*& K <= N &*&
W == (R + 1 + K) % N &*&
buffer(Storage, N, M, ?contents) &*&
length(contents) == N &*&
// abstract representation
abs == take(K, rotate_left((R+1)%N, contents))

Figure 3: Simpli!ed de!nition of queue well-formedness.
The notation |-> is read as "points-to".

• R is the index of the element pointed-to by the front of the
queue pointer pcReadFrom

• K is the number of valid elements in the queue (i.e., the value
of the queue struct "eld uxMessagesWaiting)

For example, in Figure 2 state S7 has N = 4, M = 1,W = 1, R = 1
andK = 3. The questionmark syntax (e.g., ?N) binds the name to the
value of the struct "eld.10 Finally, abs is an abstract representation
of the queue, which is how we capture functional correctness of
the queue. It is the list of valid elements (i.e., a list of list of chars)
in the queue allowing for wraparound obtained by rotating until
the front of the queue is at the head and taking the "rst K elements
of the contents of the queue bu!er storage. For example, in Figure 2
state S7 has contents [[E];[-];[C];[D]] (where - stands for any
value) and abs is obtained by rotating this list by (R+1) mod N = 2
times and taking the "rst K = 3 elements: [[C];[D];[E]]. The
ability to ‘cast’ between the concrete representation of an object
(such as the queue bu!er storage) and a mathematical de"nition
(such as the abs list) is a valuable feature of deductive veri"cation.

Suitably equipped with this de"nition, the precondition can be
explained as follows. The "rst requirement is that the queue is
well-formed and the calling task or ISR has exclusive ownership
of the resource. Both conditions are speci"ed by queue(. . .) on
line 4. The second requirement is that the queue must have space
in its bu!er for the message: K < N (line 4). Thirdly, the input
parameter pvItemToQueue must be a pointer to a bu!er of at least
M bytes (to avoid out-of-bounds memory accesses). We express
this with another de"nition chars(pvItemToQueue, M, ?x) on
line 5 where x is the abstract list ofM bytes. More subtly, to avoid
unde"ned behavior when calling memcpy, it is essential that the

10VeriFast calls this pattern matching, a restricted form of existential quanti"cation

���

Nathan Chong and Bart Jacobs

destination (pcWriteTo pointing into the queue storage) and source
(pvItemToQueue) are disjoint (i.e., non-aliased). This is expressed
in the precondition using the separating conjunction &*& which
speci"es such disjointness by de"nition.11 Finally, only for the
purposes of simplifying the proof in this example, we require that
the message to be placed to the back of the queue.

The postcondition re3ects the obligations that the function must
satisfy. Speci"cally, that the queue remains well-formed with one
more valid element (K + 1) and an updated back pointer that takes
into account wraparound behavior (i.e., the new element pointed-to
by pcWriteTo is (W + 1) mod N) and the new abstract representa-
tion is the original abstract representation abs with a new element
containing x appended, where x is the contents of the input param-
eter pvItemToQueue.

Next, we turn to the proof annotations. VeriFast establishes the
proof by symbolic execution: the function body is executed symboli-
cally starting from the symbolic state described by the precondition.
At each statement, VeriFast ensures that the permissions necessary
to execute the statement are present in the symbolic state. And
at the function return, VeriFast ensures that the ending symbolic
satis"es the postcondition. The proof annotations can be seen as
rewritings of the symbolic state necessary to help VeriFast with its
reasoning.

• The annotation on line 15 calling split_element is a lemma
to rewrite the queue storage from being a bu!er of N ele-
ments into three pieces: the element that we wish to update
(i.e.,W) in the memcpy and the ‘pre"x’ and ‘su#x’ elements
on either side. For example, in Figure 2 this lemma operat-
ing on state S7 would yield a pre"x of [[E]] and su#x of
[[C];[D]]. This rewrite is necessary so that the memcpy has
exactly the right permission for its destination. Subsequently,
we rewrite these three pieces back into a single bu!er using
two further lemmas (line 22–23). All of the lemmas used in
the queue proofs are themselves proved in VeriFast.

• The annotations between lines 24-39 reestablish the queue
invariant for well-formedness between pcWriteTo andW
after the pointer is incremented and, if necessary, wrapped-
around (lines 27–31). In particular, we need basic lemmas
about modulo arithmetic to establish the updated pointer
now points-to element ((W + 1) mod N) ∗M . Notice that we
have to establish this fact in both the if and else branch
cases in order to deduce that this always holds at function
return.

• The annotations between lines 45–47 are also necessary to
reestablish queue invariants for well-formedness. The most
complicated of these is enq_lemma, which establishes that
in-place updating the queue bu!er using memcpy and incre-
menting the back pointer is equivalent to simply appending
the new element to abs.

11The separating conjunction is also denoted simply as ∗. The assertion P ∗Q means
that the symbolic heap can be split into two disjoint parts such that one satis"es P
and the other Q . The separating conjunction between the queue and chars resources
in the precondition means the symbolic heap must be splittable into two disjoint parts
such that the queue resource appears in one and the chars resource in the other.

Concurrent Behavior. Finally, we sketch how the proofs reason
about the concurrency mechanisms outlined in Section 3.2. Essen-
tially we encode Table 2 as ghost state: logical state visible to VeriFast
but not part of the implementation. The two generic mechanisms,
interrupt masking and scheduler suspension, are modeled as two
ghost mutexes. Access to the interrupt masking mutex is given to
both tasks and ISRs, however, their lock invariant (the resources
gained by the caller by acquiring the mutex) di!er: A task that
masks interrupts (modeled by acquiring the interrupt masking mu-
tex) gains access to the queue including the ability to lock through
cTxLock and cRxLock. An ISR that masks interrupts gains access to
the queue and, if cTxLock and cRxLock are unlocked, the task wait-
ing lists. Access to the scheduler suspension mutex is given only to
tasks. A task that suspends the scheduler (modeled by acquiring
the scheduler suspension mutex) gains access to the task waiting
lists if cTxLock and cRxLock are locked. For each concurrent queue
API function we specify the permissions necessary to use these two
mechanisms and rely on VeriFast’s permission checking to ensure
that resources are correctly acquired and released.

5 FINDINGS
In this section we outline four "ndings discovered during veri"ca-
tion. We note that FreeRTOS is heavily tested and the kernel has
included the queue implementation from V1.0.0, so it is a testament
to the thorougness of formal veri"cation that we were able to dis-
cover and report these "ndings in such battle-hardened code. For
each "nding we are able to prove that appropriate "xes resolve the
underlying issue.

Unsigned wraparound in xQueueGenericCreate. This function
is responsible for allocating a fresh queue in memory. The size of
the queue bu!er is uxQueueLength * uxItemSize where each is
of type UBaseType_t (an unsigned integer of the natural width
of the target platform). With large values this multiplication can
cause unsigned integer wraparound resulting in a smaller bu!er
being allocated than expected. If the queue is subsequently used
then the mismatch between the queue length and the underlying
bu!er would be a memory safety issue. This behavior is unlikely in
practice because it involves requesting more memory than a device
could address. This "nding was addressed by adding an assertion
check in https://github.com/FreeRTOS/FreeRTOS-Kernel/pull/75.

Signed over"ow of cTxLock and cRxLock. As discussed in Sec-
tion 3.2, the queue lock variables are used to protect the queue
task wait lists. If the following behavior occurs then it is possible
to cause signed over3ow of these variables, which is unde"ned C
behavior [13, 6.5 para 5].

• Initially, the queue is empty with both cTxLock and cRxLock
unlocked (i.e., set to −1)

• A task calls xQueueReceive The queue is empty so the task
will be blocked. The task atomically sets the queue lock
variables to 0 (locked).

• An interrupt occurs and its corresponding ISR calls xQueue-
GenericSendFromISR. This function "nds the queue locked
so cannot access the task wait lists, but can increment the
cTxLock value.

���

Formally Verifying FreeRTOS’ Interprocess Communication Mechanism

1 void prvCopyDataToQueue(Queue_t * const pxQueue,
2 const void * pvItemToQueue,
3 const BaseType_t xPosition)
4 /*@requires queue(pxQueue, ?Storage, ?N, ?M, ?W, ?R, ?K, ?abs) &*& K < N &*&
5 chars(pvItemToQueue, M, ?x) &*&
6 xPosition == queueSEND_TO_BACK;@*/
7 /*@ensures queue(pxQueue, Storage, N, M, (W+1)%N, R, K+1, append(abs, {x})) &*&
8 chars(pvItemToQueue, M, x);@*/
9 {
10 /* This function is called from a critical section. */
11 UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
12

13 /* The abstract list of list of chars of `Storage` is `contents` */
14 /*@assert buffer(Storage, N, M, ?contents);@*/
15 /*@split_element(Storage, N, M, W);@*/
16 /*@assert
17 buffer(Storage, W, M, ?prefix) &*&
18 chars(Storage + W * M, M, _) &*&
19 buffer(Storage + (W+1) * M, (N-1-W), M, ?suffix);@*/
20 memcpy((void *) pxQueue->pcWriteTo, pvItemToQueue, (size_t) pxQueue->uxItemSize);
21 /* After the update we stitch the buffer back together */
22 /*@join_element(Storage, N, M, W);@*/
23 /*@combine_list_update(prefix, x, suffix, W, contents);@*/
24 /*@mul_mono_l(W, N-1, M);@*/
25 pxQueue->pcWriteTo += pxQueue->uxItemSize;
26

27 if(pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail)
28 {
29 /*@div_leq(N, W+1, M);@*/ /* now we know W == N-1 so (W+1)%N == 0 */
30 pxQueue->pcWriteTo = pxQueue->pcHead;
31 }
32 else
33 {
34 /*@{
35 div_lt(W+1, N, M); // now we know W+1 < N
36 mod_lt(W+1, N); // so, W+1 == (W+1)%N
37 note(pxQueue->pcWriteTo == Storage + ((W+1) * M));
38 note(Storage + ((W+1) * M) == Storage + (((W+1) % N) * M));
39 }@*/
40 mtCOVERAGE_TEST_MARKER();
41 }
42 pxQueue->uxMessagesWaiting = uxMessagesWaiting + (UBaseType_t) 1;
43

44 /*@{
45 enq_lemma(K, (R+1)%N, contents, abs, x);
46 mod_plus_one(W, R + 1 + K, N);
47 mod_plus_distr(R+1, K, N);
48 }@*/
49 }

Figure 4: A proof of a simpli!ed version of prvCopyDataToQueue, which places the contents of the bu"er pvItemToQueue into
the queue. We have simpli!ed the implementation and proof in this example by specializing the placement of the message to
the back of the queue. The full proof covers all options (copy-to-front and overwrite) supported by xPosition.

���

Nathan Chong and Bart Jacobs

• Assume the interrupt remains high so the task is never re-
turned to and the ISR continues to call xQueueGenericSend-
FromISR. Then after enough further interrupts, the variable
cTxLock will reach 127 and subsequently over3ow.

This behavior is unlikely in practice because of the precise timing
and conditions required. This "nding was addressed by adding an
assertion check in https://github.com/FreeRTOS/FreeRTOS-Kernel/
pull/75.

Constructing an out-of-bounds pointer in prvCopyDataToQueue.
As discussed in Section 4, this function inserts data into the queue.
The parameter xPosition determines whether the insertion is to
the back or front. In the latter case, after copying in the message,
the pointer pcReadFrom is updated as follows:
pcReadFrom -= pxQueue->uxItemSize;
if(pcReadFrom < pxQueue->pcHead)
{

pcReadFrom = pxQueue->pcTail - pxQueue->uxItemSize;
}

In the case where pcReadFrom initially points-to the zeroth el-
ement of the bu!er (i.e., equal to pcHead) then the decrement by
uxItemSize (which must be non-negative) results in a pointer that
is out of the bounds of the queue object. This is unde"ned behavior
(even though the resulting pointer is never dereferenced and even
though the pointer is only temporarily out-of-bounds) [13, 6.5.6
para 8]. As an example of how this unde"ned behavior might man-
ifest: a compiler could assume that the pointer arithmetic always
results in a pointer into the queue bu!er (otherwise the result is
unde"ned). As such, the if statement is redundant and the compiler
could remove it as dead code. No compiler that we are aware of,
including those used by FreeRTOS kernel ports12, currently takes
such an aggressive optimization.

Non-terminating execution in xQueueReceive. In the queue API
function xQueueReceive there is a case corresponding to the be-
havior when: (i) The queue is empty, (ii)xTicksToWait, the amount
of time the calling task is willing to block, is non-negative and
(iii) a timeout has occurred (signaled by the task utility function
xTaskCheckForTimeOut returning pdTRUE). This case is line 1399
in queue.c (V10.4.3). Subsequently the function checks againwhether
the queue remains empty and if so returns an error (line 1450) or
falls-through to retry receiving from the queue (line 1454). This fall-
through behavior permits the following non-terminating behavior
involving a task and two interrupts:

• Initially, the queue is empty
• A task calls xQueueReceive with 0 < xTicksToWait
• Loop
– The condition above occurs since the queue is empty,
xTicksToWait is non-negative and the function xTask-
CheckForTimeOut returns pdTRUE. Crucially, prior to us
reporting this "nding, xTaskCheckForTimeOut had a path
that returned true without decrementing xTicksToWait.
That is, xTicksToWait remains non-negative.

– An interrupt occurs and its corresponding ISR calls xQueue-
GenericSendFromISR so that the queue is no longer empty.

12https://freertos.org/RTOS_ports.html

– Back in the task, the function checks again whether the
queue remains empty. It is not, so the function falls-through
to retry receiving from the queue.

– An interrupt occurs and its corresponding ISR calls xQueue-
ReceiveFromISR so that the queue returns to empty. This
returns us to the loop state.

This behavior would be di#cult to trigger in practice due to the
precise timing required between the task and interrupts. This "nd-
ing was addressed by ensuring that xTaskCheckForTimeout sets
xTicksToWait to 0 whenever it returns true in https://github.com/
FreeRTOS/FreeRTOS-Kernel/pull/82.

6 CONCLUSIONS
We have reported on the formal veri"cation of memory safety,
thread safety and functional correctness of the FreeRTOS concur-
rent queue implementation using the VeriFast deductive veri"er. In
doing so, we have raised the level of assurance for the FreeRTOS
interprocess communication mechanism which uses this data struc-
ture. Our proofs are publicly available and run as part of continuous
integration to help ensure their continued maintenance. This work
is part of a larger trend in FreeRTOS to use formal veri"cation
techniques where they are most e!ective and the bene"ts merit the
costs.

In terms of future work, we see two interesting directions. Firstly,
linearizability is a standard correctness property for concurrent
data structures [12]. We have a hand-proof of this property for the
FreeRTOS queue using a forward-simulation argument; we would
like to mechanize this result and link it to our VeriFast proofs. Sec-
ondly, now that we have proofs for the queue, we would like to
evaluate the proof maintenance costs. On the positive side, these
proofs give FreeRTOS developers a safety net as they seek to make
changes. However, large changes could potentially require corre-
sponding e!ort to repair the proofs. Optimizations to the queue
implementation such as zero-copying would be an ideal case study.

ACKNOWLEDGEMENTS
We are grateful to Richard Barry for extensive discussions about
FreeRTOS; and Daniel Schwartz-Narbonne, Mark R. Tuttle and
Mike Whalen for valuable feedback throughout this work.

REFERENCES
[1] Amazon Web Services. The FreeRTOS Reference Manual. 2017.
[2] R. Barry. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide.

2016.
[3] C. Blundell, E. C. Lewis, and M. Martin. Subtleties of Transactional Memory

Atomicity Semantics. IEEE Computer Architecture Letters, 5(2), 2006. doi:10.1109/L-
CA.2006.18.

[4] S. Cheng, J. Woodcock, and D. D’Souza. Using Formal Reasoning on a Model of
Tasks for FreeRTOS. Formal Aspects Computing, 2015. doi:10.1007/s00165-014-
0308-9.

[5] N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-Narbonne,
S. Tasiran, M. Tautschnig, and M. R. Tuttle. Code-Level Model Checking in
the Software Development Work3ow. In International Conference on Software
Engineering, Software Engineering in Practice, 2020. doi:10.1145/3377813.3381347.

[6] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model Checking,
Second Edition. MIT Press, 2018.

[7] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A Practical System for Verifying Concurrent C.
In International Conference on Theorem Proving in Higher Order Logics TPHOLS,
2009. doi:10.1007/978-3-642-03359-9_2.

���

Formally Verifying FreeRTOS’ Interprocess Communication Mechanism

[8] B. Cook, K. Khazem, D. Kroening, S. Tasiran, M. Tautschnig, and M. R. Tut-
tle. Model Checking Boot Code from AWS Data Centers. In Computer Aided
Veri!cation CAV, 2018. doi:10.1007/978-3-319-96142-2_28.

[9] D. Déharbe, S. Galvão, and A. M. Moreira. Formalizing FreeRTOS: First Steps.
In Brazilian Symposium on Formal Methods SBMF, 2009. doi:10.1007/978-3-642-
10452-7_8.

[10] S. Divakaran, D. D’Souza, A. Kushwah, P. Sampath, N. Sridhar, and J. Woodcock.
Re"nement-Based Veri"cation of the FreeRTOS Scheduler in VCC. In Interna-
tional Conference on Formal Engineering Methods ICFEM, 2015. doi:10.1007/978-3-
319-25423-4_11.

[11] J. F. Ferreira, C. Gherghina, G. He, S. Qin, and W. Chin. Automated veri"cation
of the FreeRTOS scheduler in Hip/Sleek. International Journal on Software Tools
for Technology Transfer, 2014. doi:10.1007/s10009-014-0307-4.

[12] M. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems, 12,
1990. doi:10.1145/78969.78972.

[13] ISO/IEC. Programming languages – C. International standard 9899:2011, 2011.
[14] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.

VeriFast: A Powerful, Sound, Predictable, Fast Veri"er for C and Java. In NASA
Formal Methods NFM, 2011. doi:10.1007/978-3-642-20398-5_4.

[15] J. T. Mühlberg and F. Leo. Verifying FreeRTOS: from requirements to binary
code, 2011.

[16] P. W. O’Hearn. Separation logic. Communications of the ACM, 2019.
doi:10.1145/3211968.

[17] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and F. Piessens.
Software Veri"cation with VeriFast: Industrial Case Studies. Science of Computer
Programming, 82, 2014. doi:10.1016/j.scico.2013.01.006.

[18] C. K. Pronk. Verifying FreeRTOS; a feasibility study. Technical report, Delft
University of Technology, 2010.

[19] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock. QED at Large: A
Survey of Engineering of Formally Veri"ed Software. Foundations and Trends in
Programming Languages, 2019. doi:10.1561/2500000045.

[20] D. Sanán, L. Yang, Y. Zhao, Z. Xing, and M. Hinchey. Verifying FreeRTOS’ Cyclic
Doubly Linked List Implementation: From Abstract Speci"cation to Machine
Code. In International Conference on Engineering of Complex Computer Systems
ICECCS, 2015. doi:10.1109/ICECCS.2015.23.

[21] F. Vogels, B. Jacobs, and F. Piessens. Featherweight VeriFast. Logical Methods in
Computer Science, 2015. doi:10.2168/LMCS-11(3:19)2015.

���

